Связь между длительностью импульса и шириной его спектра. Эффективная длительность и эффективная ширина спектра сигнала Скорость убывания спектра вне основной полосы

💖 Нравится? Поделись с друзьями ссылкой

В работе было отмечено, что с увеличением числа нулей происходит смещение спектра комплексной огибающей ФМ сигнала в область более высоких частот. Имеется в виду смещение той части спектра, в которой сосредоточена основная часть энергии сигнала, поскольку принципиально спектр ФМ сигнала тождественно не равен нулю (за исключением множества точек с мерой нуль) на всей оси частот, Для определения

смещения спектра можно использовать понятие эффективной ширины спектра например, ), которая определяется соотношением

В случае ФМ сигналов интеграл в числителе расходится и определение (11.8) не имеет смысла. Но учитывая, что основная часть энергии ФМ сигнала сосредоточена между первыми нулями то бесконечные пределы интеграла в числителе можно заменить Переходя к переменной и учитывая, четная функция, а интеграл в знаменателе (11.8) равен определим эффективную ширину спектра комплексной огибающей ФМ сигнала с блоками следующим образом:

Подставляя (11.6) в (11.9), получаем

т. е. при таком определении пропорциональна интегралу от периодической функции (11.7) за период После интегрирования находим

Следовательно, чем больше блоков имеет ФМ сигнал, тем больше . В табл. 11.1 приведены значения для нескольких ФМ сигналов, существенно отличающихся друг от друга по своей структуре.

В первой строке табл. 11.1 приведены данные для прямоугольного импульса длительностью имеющего всего один блок Чем больше тем меньше Этот пример соответствует ФМ сигналу, имеющему наименьшее число блоков. Во

Таблица 11.1 (см. скан)

второй строке табл. 11.1 приведены данные для ФМ сигнала, имеющего наибольшее число блоков Этот ФМ сигнал (меандр) представляет последовательность знакопеременных импульсов. Для меандра что является максимальным значением . В третьей строке приведены данные для оптимального ФМ сигнала, у которого Для такого сигнала в два раза меньше максимального. Таким образом, эффективная ширина спектра оптимальных ФМ сигналов лежит примерно на середине между значениями, соответствующими двум крайним значениям для прямоугольного импульса и меандра. В последней строке приведено значения эффективной ширины спектра идеального (гипотетического) сигнала, состоящего из импульсов, энергетический спектр которого совпадает с энергетическим спектром одиночного импульса длительностью

При практических расчетах длительности сигнала и шири­ны его спектрав ряде случаев удобно пользоваться энергетиче­ским критерием. Активную длительность импульсаи активную ширину спектра (или ) определяют как интервал времени и диапазон частот соответственно, внутри которых сосре­доточена подавляющая часть полной энергии Э импульса (напри­мер, 95%). Если сигнал s (t ) задан на интервале времени , то его активная длительность рассчитывается из условия

В левой части равенства записана энергия сигнала, сосредоточен­ная в интервале времени 0 – (рис. 4.33,а). В правой части равенства – доля (определяемая заданным коэффициентом полной энергии сигнала.

Исходя из равенства Парсеваля, аналогично рассчиты­вается активная ширина спектра сигнала

Таким образом, активная ширина спектра сигнала соответствует полосе частот, в пределах которой заключена доля полной энергии сигнала (рис. 4.33, б).

В случае простых видеоимпульсов (например, прямоугольного, треугольного, косинусоидального), спектр которых сосредоточен в области низких частот, можно считать с достаточной для прак­тики точностью, что

где, - постоянная величина, зависящая от формы импульса и критерия оценки величини .

Рис.4.33. Сигнал (а) и его спектр (б)

Как видно из (4.61), уменьшение длительности импульса неиз­бежно приводит к увеличению ширины его спектра, и наоборот. Пользуясь соотношением (4.61), можно рассчитать полосу частот, занимаемую спектром сигнала в зависимости от его длительности.

Рис 4.34. Прямоугольный импульс (а) и его спектр (б)

Для перечисленных выше типов видеоимпульсов зна­чение близко к единице. В частности, если оцени­вать активную ширину спе­ктра прямоугольного им­пульса длительностью(рис. 4.34, а) как полосу частотf = 0 и тем значением частоты, когда спектральная плотность первый раз обращается в нуль (рис. 4.34, б), т. е. когда аргумент спектральной плотности (4.42) прини­мает значение ,то = 1. Следовательно, для пря­моугольного импульса = 1.

Пользуясь соотношением (4.60), можно показать, что в полосе (0, ) (в первом лепестке) сосредоточено свыше 90% полной энергии сигнала.

    1. Вопросы и задания для самопроверки:

    Из каких тригонометрических функций можно сформировать периодический сигнал?

    Что такое постоянная и основная составляющие, гармоники сигнала?

    Какие формулы ряда Фурье используют для описания периодических сигналов?

    Записать ряд Фурье (4.4) в тригонометрической и комплексных формах, ограничившись третьей гармоникой.

    Что такое спектр амплитуд?

    Периодический сигнал задан рядом Фурье в форме

Представить этот ряд в тригонометрической форме (4.10).

При энергетическом подходе длительность сигнала или ширину его спектра определяют по заданной доле от полной энергии сигнала. Так, например, для сигнала в виде прямоугольного импульса длительностьюt спектральная плотность имеет бесконечно широкий спектр, однако анализ показывает, что первый лепесток спектрасодержит 90% от полной энергии импульса, а сумма первого и второгоуже 95%. Аналогично можно рассуждать и о длительности бесконечно длящегося сигнала с конечной энергией.

При информационном подходе важное значение имеет форма сигнала: чем шире взята за основу условная ширина его спектра, тем ближе по форме к исходному может быть воспроизведенный по ограниченному спектру сигнал. Иногда ширину спектра определяют по уровнюот максимального значения. Для колоколообразных импульсов принята величина е -1/2 =0,606 от максимума. Ширина спектра и длительность сигнала взаимосвязаны. Для выявления этой связи определяют так называемыеэффективные длительность и ширину спектра, которые вычисляют с помощью следующих соотношений:

гдесередина импульса;

Полная длительность сигнала равна 2, а полная ширина спектра, включая и отрицательные частоты, 2, Произведение длительности на полосу равно:

Произведение*зависит от формы сигнала, но не может быть меньше 0.5(только для импульсов гауссовой формы это произведение равно 0.5). Не для всех сигналов данные интегралы имеют смысл(сходятся). Для определенияинеобходимо, чтобы функцияs(t) убывала бы быстрее, чем1/t , а функцияS(w ) быстрее, чем1/ w .

Для сигналов, не удовлетворяющих этим условиям, и применяют энергетический, либо информационный критерий, но следует помнить, что с уменьшением длительности сигнала ширина его спектра увеличивается, т.е. произведение длительности на ширину спектра для данного типа сигнала величина постоянная

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Ширина спектра сигнала 1. Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная которых составляет заданную часть полной мощности сигнала

Употребляется в документе:

Приложение № 1 к ГОСТ 24375-80

Телекоммуникационный словарь . 2013 .

Смотреть что такое "Ширина спектра сигнала" в других словарях:

    ширина спектра сигнала - Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная мощность которых составляет заданную часть полной мощности сигнала. [ГОСТ 24375 80] Тематики телевидение, радиовещание, видео Обобщающие термины… …

    Ширина спектра сигнала - 2. Ширина спектра сигнала Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная мощность которых составляет заданную часть полной мощности сигнала Источник: ГОСТ 24375 80: Радиосвязь. Термины и… …

    ширина спектра (сигнала оптического канала) - 44 ширина спектра (сигнала оптического канала) : Полоса частот или диапазон длин волн, в котором передается основная часть средней мощности оптического излучения сигнала оптического канала Источник: ОСТ 45.190 2001: Системы передачи волоконно… … Словарь-справочник терминов нормативно-технической документации

    ширина спектра выходного сигнала модуля (блока) СВЧ - ширина спектра Δfшир Интервал частот спектра выходного модуля (блока) СВЧ, в котором сосредоточена заданная часть мощности колебаний. [ГОСТ 23221 78] Тематики компоненты техники связи Обобщающие термины модули СВЧ, блоки СВЧ Синонимы ширина … Справочник технического переводчика

    ширина спектра - Полоса частот, в которой сосредоточена основная энергия излучаемого сигнала и находятся частотные составляющие, имеющие максимальные значения. Ширина спектра обычно измеряется по уровню 0,5 (ЗдБ) от максимального значения мощности или по уровню 0 … Справочник технического переводчика

    Ширина спектра выходного сигнала модуля (блока) СВЧ - 20. Ширина спектра выходного сигнала модуля (блока) СВЧ Δfшир

Теоретически, как указывалось выше, для большинства периодических функций спектр неограничен, т.е. для передачи сигналов телемеханики без изменения формы необходимы бесконечно большая полоса пропускания канала связи и отсутствие амплитудных и фазовых искажений. Практически все каналы связи имеют ограниченную полосу пропускания, и форма сигналов при передаче по каналу изменяется даже при отсутствии в этой полосе амплитудных и фазовых искажений. Очевидно, важно передать ту часть спектра сигнала, которая содержит гармонические составляющие с относительно большими амплитудами. В связи с этим вводится понятие практической ширины спектра сигнала. Под практической шириной спектра сигнала понимается та область частот, в пределах которой лежат гармонические составляющие сигнала с амплитудами, превышающими наперед заданную величину.

Поскольку средняя мощность, выделяемая сигналом на активном сопротивлении, равном 1 Ом, складывается из мощностей, выделяемых на этом сопротивлении гармоническими составляющими,

практическая ширина спектра с энергетической точки зрения может быть определена как область частот, в пределах которой сосредоточена подавляющая часть мощности сигнала.

В качестве примера определим практическую ширину спектра периодической последовательности прямоугольных импульсов (рис. 1.8,а), если требуется учесть все гармонические составляющие сигнала, амплитуды которых более 0,2 от амплитуды первой гармоники. Число подлежащих учету гармоник k может быть получено из выражения

,

откуда k = 5.

Таким образом, практическая ширина спектра в рассмотренном примере оказывается равной 5W 1 , в ней размещаются всего три гармоники (первая, третья и пятая) и постоянная составляющая.

Средняя мощность P k 5 , выделяемая в активном сопротивлении, равном 1 Ом, перечисленными составляющими, равна

Средняя мощность, выделяемая в этом же сопротивлении всеми составляющими сигнала, будет

Таким образом, %, т.е. составляющие, входящие в практический спектр, выделяют в активном сопротивлении 96 % всей мощности сигнала.

Очевидно, расширение практического спектра данного сигнала (свыше 5W 1) с энергетической точки зрения нецелесообразно.

Ограничение спектра сигнала оказывает также влияние на его форму. Для иллюстрации на рис. 1.8 показано изменение формы прямоугольных импульсов при сохранении в спектре только постоянной составляющей и первой гармоники (рис. 1.8, б ), при ограничении спектра частотой 3W 1 (рис. 1.8, в ) и при ограничении спектра частотой 5W 1 (рис. 1.8, г ). Как следует из рисунка, чем круче должен быть фронт импульса, тем большее число высших гармонических составляющих должно входить в состав сигнала.


A 0 +A 1 (t )



б
a

U (t )
U (t )

A 0 +A 1 (t )+A 3 (t ) A 0 +A 1 (t )+A 3 (t)+A 5 (t )

в
г

Рис. 1.8. Формы сигнала при ограничении спектра последовательности

прямоугольных импульсов

Рассмотренная зависимость формы периодического сигнала от количества суммируемых гармоник показывает, что при выборе практической ширины спектра сигнала нельзя ограничиваться только энергетическими соображениями. Необходимо учитывать требования к сигналу на выходе системы, как с энергетической точки зрения, так и с точки зрения сохранения его формы. В общем случае практическая ширина спектра сигнала выбирается из условия

, (1.21)

где m = 0,5… 2 – коэффициент формы импульса; при m = 1 обеспечивается передача около 90 % всей энергии сигнала.

В кодоимпульсных системах телеизмерения, а также во многих системах телеуправления каждая кодовая комбинация состоит из определенной последовательности прямоугольных импульсов и пауз. Кодовая комбинация, соответствующая данной величине измеряемого параметра или команде, может периодически передаваться по каналу связи. Спектр такого сигнала зависит, конечно, от того какая именно кодовая комбинация передается. Но самым главным фактором, определяющим удельный вес высших гармоник спектра, остается наибольшая частота следования импульсов. Поэтому и для кодоимпульсных систем при определении практически необходимой ширины полосы частот выбирают сигнал в виде периодической последовательности прямоугольных импульсов (рис. 1.5). Параметр t выбирают равным длительности самого короткого импульса среди всех встречающихся в кодовых комбинациях, период следования T = 2t. В этом случае наибольшая частота следования импульсов W max = 2p / T и частота основной гармоники спектра W 1 = W max . Необходимая ширина полосы частот сигнала определяется дискретным спектром с ограниченным числом составляющих и в соответствии с выражением (1.21).

Характер спектра, определяющий требуемую полосу частот, зависит не только от вида сигнала, но и от условий, существующих в тракте передачи. Если переходные процессы, возникающие в системе при передаче одного импульса, заканчиваются до момента возникновения следующего импульса, то вместо периодической последовательности импульсов можно рассматривать передачу независимых одиночных импульсов.



Рассказать друзьям