Современная электрическая связь. Современные виды электросвязи Смотреть что такое "Электросвязь" в других словарях

💖 Нравится? Поделись с друзьями ссылкой

Информация - сведения о каких-либо процессах, событиях, фактах или предметах. Известно, что 80..90% информации человек получает через органы зрения и 10..20% - через органы слуха. Другие органы чувств дают в сумме 1..2% информации. Физиологические возможности человека не позволяют обеспечить передачу больших объемов информации на значительные расстояния.

Связь - техническая база, обеспечивающая передачу и прием информации между удаленными друг от друга людьми или устройствами. Аналогия между связью и информацией такая же, как у транспорта и перевозимого груза. Средства связи не нужны, если нет информации, как не нужны транспортные средства при отсутствии груза.

Сообщение - форма выражения (представления) информации, удобная для передачи на расстояние. Различают оптические (телеграмма, письмо, фотография) и звуковые (речь, музыка) сообщения. Документальные сообщения наносятся и хранятся на определенных носителях, чаще всего на бумаге. Сообщения, предназначенные для обработки на ЭВМ, принято называть данными .

Информационный параметр сообщения - параметр, в изменении которого "заложена" информация. Для звуковых сообщений информационным параметром является мгновенное значение звукового давления, для неподвижных изображений - коэффициент отражения, для подвижных - яркость свечения участков экрана.

По характеру изменения информационных параметров различают непрерывные и дискретные сообщения.

Сигнал - физический процесс, отображающий передаваемое сообщение. Отображение сообщения обеспечивается изменением какой-либо физической величины, характеризующей процесс. Эта величина является информационным параметром сигнала .

Сигналы, как и сообщения, могут быть непрерывными и дискретными . Информационный параметр непрерывного сигнала с течением времени может принимать любые мгновенные значения в определенных пределах. Непрерывный сигнал часто называют аналоговым . Дискретный сигнал характеризуется конечным числом значений информационного параметра. Часто этот параметр принимает всего два значения. На Рис. 3.1 показаны виды аналогового и дискретного сигналов.

В технике связи наряду с абсолютными единицами измерения параметров электрических сигналов (мощность, напряжение и ток) широко используются относительные единицы.

Уровнем передачи сигнала в некоторой точке канала или тракта называют логарифмическое преобразование отношения энергетического параметра S (мощности, напряжения или тока) к отсчетному значению этого же параметра.

Правило преобразования определяется формулой:

где m - масштабный коэффициент; a - основание логарифма.

Уровни передачи измеряются в децибелах, если справедливы соотношения:

для уровней по мощности, дБм;

для уровней по напряжению, дБн;

Уровень передачи называется абсолютным, если P 0 =1 мВт. Если теперь задать R 0 , то при заданных значениях мощности и сопротивления легко получить соответствующие величины напряжения U 0 и тока I 0:

При R 0 = 600 Ом в практических расчетах принимают округленные значения: для U 0 = 0,775 В, а для I 0 = 1,29 мА.

Измерительные уровни служат для определения уровней передачи с помощью измерительных приборов, называемых указателями уровня.

Для измерения уровня наиболее часто применяется схема известного генератора, показанная на Рис. 3.2.

Рис. 3.1 Виды сигналов: а - аналогового, б - дискретного

Рис. 3.2 Схема известного генератора

В этой схеме ко входу исследуемого объекта, например некоторого четырехполюсника, подключается генератор испытательного сигнала с полностью определенными параметрами, т.е. должно быть известно его выходное сопротивление R Г, развиваемая ЭДС E Г (или напряжение на входе объекта U ВХ). Входное сопротивление объекта R Г также должно быть известно. К выходу объекта подключается указатель уровня с входным сопротивлением, равным номинальному значению сопротивления нагрузки; реальная нагрузка при этом отключается.

В качестве испытательного при измерении уровней передачи чаще всего применяют одночастотный синусоидальный сигнал, частота которого также должна быть известна, а начальная фаза, как правило, не фиксируется.

Если по значению параметров подключенный генератор испытательного сигнала обладает свойством нормального, т.е. его внутреннее сопротивление равно 600 Ом, развиваемая ЭДС равна 1,55 В, то измеренный на сопротивлении R Н уровень называется измерительным.

В дальнейшем будем рассматривать принципы и средства связи, основанные на использовании электрической энергии в качестве переносчиков сообщений, т.е. электрических сигналов . Выбор электрических сигналов для переноса сообщений на расстояние обусловлен их высокой скоростью распространения (около 300 км/мс)

Описание сигналов электросвязи некоторым образом необходимо для их адекватной обработки в процессе передачи. Описанием сигнала может служить некоторая функция времени. Определив так или иначе данную функцию, определяем и сигнал. Однако такое полное определение сигнала не всегда требуется. Достаточно описание в виде нескольких параметров , характеризующих основные свойства сигнала с точки зрения его передачи.

Если провести аналогию с транспортированием грузов, то для транспортной сети определяющими параметрами груза являются его масса и габариты. Сигнал также является объектом транспортирования, а техника связи - техникой транспортирования (передачи) сигналов по каналам связи.

Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.

Телефонный (речевой) сигнал . Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. Частота импульсов основного тона (f 0 на Рис. 3.3) лежит в пределах от 50..80 Гц (бас) до 200..250 Гц (женский и детский голоса). Импульсы основного тона содержат большое число гармоник (до 40) (2f 0 ,..,nf 0 на Рис. 3.3), причем их амплитуды убывают с увеличением частоты со скоростью приблизительно 12 дБ на октаву (кривая 1 на Рис. 3.3). (Напомним, что октавой называется диапазон частот, верхняя частота которого в два раза выше нижней. Т.о. амплитуда гармоники 2f 0 на 12 дБ больше, чем гармоники 4f 0 и т.д.). При разговоре частота основного тона f 0 меняется в значительных пределах.

Рис. 3.3 Спектральный состав речевого сигнала

В процессе прохождения воздушного потока из легких через голосовые связки и полости рта и носа образуются звуки речи, причем мощность гармоник частоты основного тона меняется (кривая 2 на Рис. 3.3). Области повышенной мощности гармоник частоты основного тона называются формантами (см. Рис. 3.3). Различные звуки речи содержат от двух до четырех формант. Высокое качество передачи телефонного сигнала характеризуется уровнем громкости, разборчивостью, естественным звучанием голоса, низким уровнем помех. Эти факторы определяют требования к телефонным каналам.

Основными параметрами телефонного сигнала являются:

­ мощность телефонного сигнала P ТЛФ. Согласно данным МСЭ-Т средняя мощность телефонного сигнала в точке с нулевым измерительным уровнем на интервале активности составляет 88 мкВт. С учетом коэффициента активности (0,25) средняя мощность телефонного сигнала P СР равна 22 мкВт. Кроме речевых сигналов в канал связи могут поступать сигналы управления, набора номера и пр. С учетом этих сигналов среднюю мощность телефонного сигнала принимают равной 32 мкВт, т.е. средний уровень телефонного сигнала составляет p СР = 10 lg (32 мкВт/1мВт) = - 15 дБм0;

­ коэффициент активности телефонного сообщения, т.е. отношение времени, в течение которого мощность сигнала на выходе канала превышает заданное пороговое значение, к общему времени занятия канала для разговора. При разговоре каждый из собеседников говорит приблизительно 50% времени. Кроме того, отдельные слова, фразы отделяются паузами. Поэтому коэффициент активности составляет 0,25..0,35.

­ динамический диапазон определяется выраженным в децибелах отношением максимальной и минимальной мощности сигнала

Динамический диапазон телефонного сигнала составляет D С =35...40 дБ;

­ пик-фактор сигнала

который составляет 14 дБ. При этом максимальная мощность, вероятность превышения которой исчезающе мала, равна 2220 мкВт (+3,5 дБм0);

­ энергетический спектр речевого сигнала - область частот, в которой сосредоточена основная энергия сигнала (Рис. 3.4)

где - спектральная плотность среднего квадрата звукового давления; - порог слышимости (минимальное звуковое давление, которое начинает ощущаться человеком с нормальным слухом на частотах 600..800 Гц); ?f = 1 Гц. Из Рис.3.4 следует, что речь представляет собой широкополосный процесс, частотный спектр которого простирается от 50..100 Гц до 8000..10000 Гц. Установлено, однако, что качество речи получается вполне удовлетворительным при ограничении спектра частотами 300..3400 Гц. Эти частоты приняты МСЭ-Т в качестве границ эффективного спектра речи. При указанной полосе частот слоговая разборчивость составляет около 90%, разборчивость фраз - более 99% и сохраняется удовлетворительная натуральность звучания.

Рис. 3.4 Энергетический спектр речевого сигнала

Сигналы звукового вещания . Источником звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека.

Динамический диапазон вещательной передачи следующий: речь диктора 25..35 дБ, художественное чтение 40..50 дБ, вокальные и инструментальные ансамбли 45..55 дБ, симфонический оркестр до 65 дБ. При определении динамического диапазона максимальным считается уровень, вероятность превышения которого равна 2%, а минимальным - 98%.

Средняя мощность сигнала вещания существенно зависит от интервала усреднения. В точке с нулевым измерительным уровнем средняя мощность составляет 923 мкВт при усреднении за час, 2230 мкВт - за минуту и 4500 мкВт - за секунду. Максимальная мощность сигнала вещания в точке с нулевым измерительным уровнем составляет 8000 мкВт.

Частотный спектр сигнала вещания расположен в полосе частот 15..20000 Гц. При передаче как телефонного сигнала, так и сигналов вещания полоса частот ограничивается. Для достаточно высокого качества (каналы вещания первого класса) эффективная полоса частот должна составлять 0,05..10 кГц, для безукоризненного воспроизведения программ (каналы высшего класса) 0,03...15 кГц.

Факсимильный сигнал формируется методом построчный развертки. Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами сканирующего пятна. Для параметров факсимильных аппаратов, рекомендованных МСЭ-Т, верхняя частота сигнала может составлять 732, 1100 и 1465 Гц. Динамический диапазон сигнала составляет около 25 дБ, пик-фактор равен 4,5 дБ при 16 градациях яркости.

Телевизионный сигнал также формируется методом развертки. Анализ показывает, что энергетический спектр телевизионного сигнала сосредоточен в полосе частот 0..6 МГц. Динамический диапазон D С 40 дБ, пик-фактор 4,8 дБ.

Основным параметром дискретного сигнала с точки зрения его передачи является требуемая скорость передачи (бит/с).

Аналогичные параметры определяются и для каналов связи. Параметры каналов связи должны быть не меньше соответствующих параметров сигналов.

Свести параметры аналоговых сигналов к единому параметру (скорости передачи) позволяет преобразование этих сигналов в цифровые (см. подраздел 8.2 "Цифровая обработка аналоговых сигналов").

Система электросвязи - совокупность технических средств и среды распространения, обеспечивающая передачу сообщений . Обобщенная структурная схема систем электросвязи показана на Рис. 3.5.

Рис. 3.5 Обобщенная структурная схема систем электросвязи

Сообщение при помощи преобразователя сообщение-сигнал преобразуется в первичный электрический сигнал. Первичные сигналы не всегда удобно (а иногда невозможно) непосредственно передавать по линии связи. Поэтому первичные сигналы при помощи передатчика ПРД преобразуются в так называемые вторичные сигналы, характеристики которых хорошо согласуются с характеристиками линии связи.

Канал связи - совокупность технических устройств (преобразователей) и среды распространения, обеспечивающих передачу сигналов на расстояние.

Каналы и системы связи, использующие искусственную среду распространения (металлические провода, оптическое волокно), называются проводными, а каналы и системы связи, в которых сигналы передаются через открытое пространство - радиоканалами и радиосистемами.

Условная классификация современных видов электросвязи показана на Рис. 3.6. Все виды электросвязи по типу передаваемых сообщений могут быть разделены на предназначенные для передачи звуковых сообщений, оптических сообщений в виде подвижных изображений, оптических сообщений в виде неподвижных изображений и сообщений между ЭВМ. В зависимости от назначения сообщений виды электросвязи могут быть разделены на предназначенные для передачи сообщений индивидуального и массового характера.

Рис. 3.6 Современные виды электросвязи

Приведенная на Рис. 3.6 классификация достаточно условна, поскольку в последнее время наметилась тенденция объединения видов электросвязи в единую интегральную систему на основе цифровых методов передачи и коммутации для передачи всех видов сообщений.

Подобные документы

    Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа , добавлен 05.04.2017

    Связь как отрасль хозяйства, обеспечивающая прием и передачу информации. Особенности и устройство телефонной связи. Услуги спутниковой связи. Сотовая связь как один из видов мобильной радиосвязи. Передача сигнала и соединение с помощью базовой станции.

    презентация , добавлен 22.05.2012

    Ретранслятор как комплекс оборудования, предназначенного для обеспечения связи между двумя и более радиопередатчиками, удаленными друг от друга на большие расстояния. Принцип его действия, структура и компоненты. Выбор внешней и внутренней антенны.

    курсовая работа , добавлен 26.01.2015

    Характеристики и параметры сигналов и каналов связи. Принципы преобразования сигналов в цифровую форму и требования к аналогово-цифровому преобразователю. Квантование случайного сигнала. Согласование источника информации с непрерывным каналом связи.

    курсовая работа , добавлен 06.12.2015

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Зарождение концепции многоуровневой иерархической структуры сети телефонной связи. Электронная технология, позволившая перевести все средства телефонии на элементную базу. Развитие IР-телефонии, обеспечивающей передачу речи по сетям пакетной коммутации.

    реферат , добавлен 06.12.2010

    Функциональная схема и основные элементы цифровой системы. Каналы связи, их характеристики. Обнаружение сигнала в гауссовом шуме. Алгоритмы цифрового кодирования. Полосовая модуляция и демодуляция. Оптимальный прием ДС сигнала. Методы синхронизации в ЦСС.

    курс лекций , добавлен 02.02.2011

    Расчет практической ширины спектра сигнала и полной энергии сигнала. Согласование источника информации с каналом связи. Расчет интервала дискретизации и разрядности кода, вероятности ошибки при воздействии "белого шума". Определение разрядности кода.

    курсовая работа , добавлен 07.02.2013

    Схема цифрового канала связи. Расчет характеристик колоколообразного сигнала: полной энергии и ограничения практической ширины спектра. Аналитическая запись экспоненциального сигнала. Временная функция осциллирующего сигнала. Параметры цифрового сигнала.

    курсовая работа , добавлен 07.02.2013

    Принцип действия телефонной сети. Классификация внутриучрежденских телефонных систем, их достоинства. Некоторые правила телефонного общения секретаря с клиентом. Основные стандарты сотовой радиотелефонной связи. Особенности и удобство факсимильной связи.

С использованием радио и СВЧ-связи , а также ВОЛС , спутниковой связи и глобальной сети Интернет .

Принцип электросвязи основан на преобразовании сигналов сообщения (звук , текст , оптическая информация) в первичные электрические сигналы. В свою очередь, первичные электрические сигналы при помощи передатчика преобразуются во вторичные электрические сигналы, характеристики которых хорошо согласуются с характеристиками линии связи . Далее посредством линии связи вторичные сигналы поступают на вход приёмника . В приемном устройстве вторичные сигналы обратно преобразуются в сигналы сообщения в виде звука, оптической или текстовой информации.

Этимология

Слово «электросвязь» происходит от нов.-лат. electricus и др.-греч. ἤλεκτρον (электр, блестящий металл; янтарь) и глагола «вязать». Синонимом является слово «телекоммуникации», употребляемое в англоговорящих странах.

Классификация электросвязи

По виду передачи информации все современные системы электросвязи условно классифицируются на предназначенные для передачи звука , видео , текста .

В зависимости от назначения сообщений виды электросвязи могут быть квалифицированы на предназначенные для передачи информации индивидуального и массового характера. По временным параметрам виды электросвязи могут быть работающими в реальном времени либо осуществляющими отложенную доставку сообщений.

Основными первичными сигналами электросвязи являются: телефонный , звукового вещания , факсимильный , телевизионный , телеграфный , передачи данных .

Типы связи

  • Радиосвязь - для передачи используются радиоволны.
    • ДВ-, СВ-, КВ- и УКВ-связь без применения ретрансляторов
    • Спутниковая связь - связь с применением космического ретранслятора(ов)
    • Радиорелейная связь - связь с применением наземного ретранслятора(ов)
    • Сотовая связь - связь с использованием сети наземных базовых станций

Сигнал

Линия связи может содержать такие устройства преобразования сигнала, как усилители и регенераторы . Усилитель просто усиливает сигнал вместе с помехами и передаёт дальше, используется в аналоговых системах передачи (АСП). Регенератор («переприёмник») - производит восстановление сигнала без помех и повторное формирование линейного сигнала, используется в цифровых системах передачи (ЦСП). Усилительные/регенерационные пункты бывают обслуживаемыми и необслуживаемыми (ОУП, НУП, ОРП и НРП соответственно).

В ЦСП оконечное оборудование называется ООД (оконечное оборудование данных , DTE), УПС - АКД (аппаратура окончания канала данных или оконечное оборудование линии связи , DCE). Например, в компьютерных сетях роль ООД выполняет компьютер , а АКД - модем .

Стандартизация

Стандарты в мире связи исключительно важны, так как оборудование связи должно уметь взаимодействовать друг с другом. Существует несколько международных организаций, публикующих стандарты связи. Среди них:

  • Международный союз электросвязи (англ. International Telecommunication Union , ITU) - одно из агентств ООН .
  • (англ. Institute of Electrical and Electronics Engineers , IEEE).
  • Специальная комиссия интернет-разработок (англ. Internet Engineering Task Force , IETF).

Кроме того, нередко стандарты (как правило, де-факто) определяются лидерами индустрии телекоммуникационного оборудования.

См. также

  • Всемирный день электросвязи и информационного общества

Литература

  • Системы и сети передачи информации, Москва, «Радио и Связь», 2001

Ссылки

  • Пример действующих правил диагностики для оценки параметров абонентских линий

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Электросвязь" в других словарях:

    Электросвязь … Орфографический словарь-справочник

    Электросвязь - всякая передача или прием знаков, сигналов, письменного текста, изображения файлов, звуков по проводной, радио, оптической и другим электромагнитным системам. Источник … Словарь-справочник терминов нормативно-технической документации

    электросвязь - Передача и прием сигналов, отображающих звуки, изображения, письменный текст, знаки или сообщения любого рода по электромагнитным системам. [ГОСТ 22348 86] электросвязь Любая передача, излучение или прием знаков, сигналов, письменного текста,… … Справочник технического переводчика

    Передача информации посредством электрических сигналов, распространяющихся по проводам (проводная связь), или (и) радиосигналов (радиосвязь). К электросвязи относят, кроме того, передачу информации при помощи оптических систем связи. Основные… … Большой Энциклопедический словарь

    Сущ., кол во синонимов: 1 связь (97) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Электросвязь - ОАО «Электрическая связь» организация, связь … Словарь сокращений и аббревиатур

В. О. Шварцман

Развитие электросвязи началось более 160 лет назад – с момента появления телеграфной связи. Сейчас насчитывается 11 видов электросвязи.

Как видно из таблицы, подавляющее большинство видов электросвязи (10 из 11) предназначено для человека – как отправителя, так и получателя информации. Только передача данных используется для обмена информацией между ЭВМ и между человеком и ЭВМ.

При рассмотрении таблицы возникает ряд вопросов:

4. Можно ли с помощью средств электросвязи предоставлять услуги, выходящие за рамки непосредственного общения людей?

Для ответа на эти вопросы воспользуемся результатами , свидетельствующими о информационных возможностях некоторых видов электросвязи.

Общеизвестно, что появление электросвязи дало возможность человеку передавать различную информацию на значительно большие расстояния, чем при непосредственном общении. Но помимо этого, средства связи имеют различные информационные возможности (см. таблицу).

А теперь попробуем ответить на поставленные выше вопросы.

Вид электросвязи Передаваемая информация Получаемая информация (%) по сравнению с непосредственным общением (принято за 100%) Характер передачи
Телеграфная Буквенно-цифровая (текстовая) 7
Телефонная Речь 45 "Точка – точка"
Факсимильная Неподвижные изображения - "Точка – точка", циркулярная, многоадресная
Звуковое вещание Музыка, пение, речь - "Точка – много точек"
Телевизионное вещание Музыка, пение, речь, подвижные изображения 95 "Точка – много точек"
Передача данных Буквенно-цифровая - "Точка – точка", циркулярная, многоадресная
Телерукопись Чертежи, схемы - "Точка – точка"
Видеотелефон Речь, подвижные изображения (медленно меняющиеся) - "Точка – точка"
Аудиоконференции Речь и текст 50 "Много точек – много точек"
Видеоконференции Речь, неподвижные и подвижные изображения 95 "Много точек – много точек"
Обработка сообщений Текстовая, неподвижные изображения, преобразование формы представления информации - "Точка – точка", циркулярная, многоадресная

1. Почему развитие электросвязи началось с телеграфии?

По-видимому, причин тому несколько.

  1. Закономерность развития. Как вид электрической связи телеграфия имела большую предысторию – от оптического и звукового телеграфа (сигнализация кострами и семафором, барабанный бой и т. п.) до электрохимического и элементарного электромагнитного.
  2. Историческая обусловленность. Поскольку развитие техники определяется состоянием соответствующих направлений науки и практики, то в первой трети прошлого столетия появились предпосылки для создания электромагнитного телеграфа.
  3. Технические возможности. Для передачи сообщений на расстояние проще всего использовать электрический ток путем его включения и выключения на передаче, а также притяжение магнитной стрелки электромагнитом, включенным на приеме.

2. Что является движущей силой появления новых видов электросвязи?

Как следует из таблицы, с появлением новых видов электросвязи объем информации, получаемой с их помощью, приближается к объему информации, получаемой при непосредственном общении людей. Поэтому как только появились возможности для превращения звуковых колебаний, создаваемых речью человека, в электрические сигналы и обратного их преобразования на приеме, возникла (примерно через 40 лет после телеграфии) телефония, резко увеличившая объем передаваемой информации по сравнению с непосредственным общением (с 7 до 45 %).

После этого была организована факсимильная связь, которая значительно расширила возможности человека при передаче не только текстовых и звуковых сообщений, но и чертежей, рисунков, фотографий.

Появление этого вида связи стало возможным после реализации идеи последовательной передачи изображений по элементам и разработки способов и устройств, способных преобразовать неподвижные изображения в электрические сигналы.

В качестве преобразователей на передаче были использованы фотоэлементы, а на приеме – электросветовые (с записью на фотобумагу), электрохимические (с записью на бумагу, покрытую специальным составом, реагирующим на силу тока), электростатические (с записью на специальную бумагу, реагирующую на величину электрического заряда) и другие методы. Однако больше половины информации (см. таблицу), получаемой человеком с помощью органов зрения, не могло быть передано с помощью средств связи, пока не были решены задачи превращения подвижных изображений в электрические сигналы и обратно. Так в результате изобретения электроннолучевых трубок – иконоскопа (передающей) и кинескопа (приемной) – появилось телевидение.

Этим завершился один из очень важных этапов приближения информационных возможностей средств электросвязи к возможностям непосредственного обмена информацией между людьми. Этот этап охватывает все виды сообщений, которые передаются и принимаются органами зрения, слуха, движения, мимики и жестов.

Осталась неохваченной только информация, получаемая и выдаваемая человеком с помощью органов осязания и обоняния. Но эта часть информации сравнительно невелика, и есть все основания полагать, что со временем ее можно будет передавать с помощью средств электросвязи. Некоторые достижения в этом направлении уже имеются. В парфюмерной промышленности, например, испытывают "электронный нос" (устройство для оценки запахов духов), а в пищевой промышленности – "электронный рот" (устройство для дегустации вин). Поэтому есть надежда, что со временем связь обеспечит 100 %-ную передачу информации, получаемой при непосредственном взаимодействии людей между собой и с окружающим миром.

Исходя из сказанного, можно сделать вывод о том, что движущей силой появления и развития новых видов электросвязи является стремление максимально приблизить информативность электросвязи к условиям непосредственного общения.

Подытоживая данные рассуждения, можно констатировать, что развитие электросвязи началось с низкоскоростной передачи текстовых сообщений (телеграфия), затем появилась телефонная связь, требующая больших скоростей передачи, после этого – передача неподвижных изображений (факсимильная связь), звуковое (аудио) вещание, видеовещание (телевидение), видеотелеконференции на основе применения технологий мультимедиа с эффектом виртуальной реальности, причем для каждого следующего вида связи требовались более высокие скорости передачи. Таким образом, просматривается очевидная тенденция – по мере появления новых видов электросвязи повышается скорость передачи информации. Эта тенденция подтверждается и экономическими соображениями.

3. Каковы перспективы дальнейшего развития видов электросвязи?

На основе изложенного может возникнуть вопрос, не остановится ли на этом развитие связи? Нет, не только не остановится, но даже не замедлится, и, более того, будет происходить более быстрыми темпами. И вот почему.

Во-первых, мы рассмотрели только последовательность создания новых видов связи, но совершенно не затронули вопросов развития предоставляемых с их помощью услуг. А ведь совершенно очевидно, что низкое качество услуг может свести к нулю информативность любого вида связи. Поэтому одним из основных направлений развития электросвязи остается увеличение числа услуг и повышение их качества.

Этот процесс будет происходить на основе новых технологий: интегральные и интеллектуальные сети, сети персональной и подвижной связи, мультимедиа, новые направляющие системы и методы передачи, сжатие информации и др. Но при этом телефония останется телефонией, как бы ее ни называли (например, компьютерная телефония, телефонная почта), а передача данных – передачей данных и т. д.

Одновременно с этим необходимо будет решить вопросы, связанные со снижением себестоимости и тарифов на услуги связи.

Решение этих задач в значительной степени зависит от развития электроники и вычислительной техники. При этом при оценке качества всех видов связи используются те же параметры, что и для оценки качества передачи информации при непосредственном общении, а основным требованием является максимальное приближение качества услуг связи к качеству передачи при непосредственном общении. Правда, в первом случае добавляются еще и требования к доставке по адресу и времени передачи.

Во-вторых, все вышеизложенное относится только к передаче информации в системе "точка – точка" (между двумя людьми). Однако человек может одновременно общаться не с одним человеком, а с многими людьми (система "точка – много точек"). Общение может происходить также по схеме "много точек – много точек" (имеется в виду масса людей).

И, наконец, в-третьих, мы ограничились рассмотрением только тех случаев, когда источником и потребителем информации является человек, тогда как сейчас в этом качестве широко и все чаще выступает ЭВМ. Более того, системы телеобработки и телематические службы будут все активнее использовать услуги электросвязи и в первую очередь услуги, базирующиеся на новых технологиях.

Отметим только, что услуги при связи ЭВМ – ЭВМ и человек – ЭВМ все более совершенствуются и по качеству приближаются к услугам непосредственного общения, например, услуга аутентификации отправителя и получателя, договоренность о методе работы (симплекс – дуплекс), о возможности приема сообщения определенного размера, конфиденциальность.

4. Может ли электросвязь предоставить услуги, выходящие за рамки непосредственного общения людей?

При ответе на этот вопрос речь будет идти только о тех услугах электросвязи, которые отсутствуют при непосредственном общении людей или имеют при нем более низкое качество.

Рассмотрим такую услугу, как передача с переприемом и хранением. Данная услуга удобна в условиях, когда отправитель и получатель находятся в местах с разным поясным временем или когда передать информацию раньше нельзя или неудобно, а позже не представляется возможным. Такие услуги предоставляются службами обработки сообщений (электронной почты), компьютерной телефонии и другими службами электросвязи.

Может возникнуть и другая ситуация: пользователь желает сохранить конфиденциальность получения информации. При непосредственной встрече с этим лицом уклониться от его намерений бывает очень трудно, тогда как служба компьютерной телефонии предоставляет такую возможность: при получении телефонного вызова абонент до снятия трубки нажатием специальной кнопки на аппарате получает на дисплее не только номер вызывающего абонента, но и его фотографию. На основании этих сведений он решает, снимать трубку или имитировать свое отсутствие. В более простых системах телефонной связи на экране аппарата высвечивается номер вызывающего телефона.

Существует и такая услуга, как "замкнутая группа абонентов", которую предоставляет служба обработки сообщений. Ее реализация в условиях непосредственного общения в большей массе людей весьма проблематична.

В местах собрания большого количества людей (в пределах непосредственной слышимости и видимости, когда обходятся без средств связи) может иметь место обмен разными видами информации (речь, текст, неподвижные и подвижные изображения).

Такие системы связи, как аудио- и видеоконференции, не только полностью обеспечивают дистанционный обмен всеми перечисленными видами информации, но и создают дополнительные возможности, в частности, передачу некоторой информации только определенной группе участников.

Большие возможности связи по сравнению с непосредственным общением человека с человеком или человека с ЭВМ не должно удивлять. Мы уже привыкли к тому, что микроскоп, телескоп, автомобиль, самолет и т. п. расширяют наши возможности.

Литература

  1. Шварцман В. О. Электросвязь и информатизация // Электросвязь. – 1997. – № 5.

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткая информация о видах электросвязи Электросвязь - передача информации посредством электрических сигналов, распространяющихся по проводам (проводная связь), или (и) радиосигналов (радиосвязь). К электросвязи относят, кроме того, передачу информа...


А также другие работы, которые могут Вас заинтересовать

32496. ТРЕБОВАНИЯ К ПОДГОТОВКЕ СОВРЕМЕННОГО УЧИТЕЛЯ ИНФОРМАТИКИ 102.5 KB
03 Элементы абстрактной и компьютерной алгебры Понятие группы кольца поля булевой алгебры.04 Теория алгоритмов Понятие вычислимой функции. Понятие программы. Общее понятие исчисления.
32497. ОБОРУДОВАНИЕ ШКОЛЬНОГО КАБИНЕТА ИНФОРМАТИКИ 59.5 KB
Оборудование школьного кабинета информатики Введение в учебный план средней школы нового предмета Основы информатики и вычислительной техники потребовало разрешения проблемы обеспечения взаимодействия учащихся с ЭВМ. КВТ предназначен также для использования в преподавании различных учебных предметов трудового обучения в организации общественно полезного и производительного труда учащихся для эффективного управления учебновоспитательным процессом. КВТ может использоваться также и для организации компьютерных клубов учащихся других форм...
32498. УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ ПО ИНФОРМАТИКЕ 90.5 KB
Теория и методика обучения информатики УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ ПО ИНФОРМАТИКЕ. Некомпьютерные средства обучения информатике Понятие и дидактические функции технических средств обучения Еще основоположник классноурочной системы обучения Ян Амос Коменский отмечал: . Наиболее высокое качество усвоения достигается при непосредственном сочетании слова учителя и предъявляемого учащимся с помощью технических средств обучения ТСО изображения в процессе передачи учебной информации. Техническими средствами обучения называют проекционную...
32499. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПО КУРСУ ИНФОРМАТИКИ 49.5 KB
В систему средств обучения наряду с учебниками учебными и методическими материалами и программным обеспечением для компьютеров входят и сами компьютеры образующие единую комплексную среду которая и позволяет учителю достигать поставленных целей обучения. Вот перечень основных компонентов рекомендуемой системы средств обучения информатике в школе: программнометодическое обеспечение курса информатики включающее как программные средства для поддержки преподавания так и инструментальные программные средства ИПС обеспечивающие учителю...
32500. ОСНОВНЫЕ ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ ИНФОРМАТИКЕ В СРЕДНЕЙ ШКОЛЕ 68 KB
Все это приемлемо и на уроках по информатике. Применение ИКТ может существенно изменять характер школьного урока что делает еще более актуальным поиск новых организационных форм обучения которые должны наилучшим образом обеспечивать образовательный и воспитательный процесс. Главный признак урока это его дидактическая цель показывающая к чему должен стремиться учитель. Цель  тип урока  содержание урока  методы  форму познавательной деятельности учащихся  результат Основные типы уроков: урок формирования знаний; урок закрепления...
32501. МЕТОДЫ И ПРИЕМЫ ФОРМИРОВАНИЯ СИСТЕМНО-НАУЧНЫХ ПОНЯТИЙ НА УРОКАХ ИНФОРМАТИКИ И ВО ВНЕУРОЧНОЕ ВРЕМЯ 48 KB
Теория и методика обучения информатики МЕТОДЫ И ПРИЕМЫ ФОРМИРОВАНИЯ СИСТЕМНОНАУЧНЫХ ПОНЯТИЙ НА УРОКАХ ИНФОРМАТИКИ И ВО ВНЕУРОЧНОЕ ВРЕМЯ. Методы и приемы формирования системноинформационных понятий на уроках информатики и во внеурочной работе со школьниками Философские аспекты современного школьного курса информатики Проблема существования и бытия человека в полностью технизированном и информатизированном мире не могла не занимать философов что вызвало к жизни концепцию информационного общества. Пропедевтика методов системного анализа...
32502. ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРИ ИЗУЧЕНИИ ИНФОРМАТИКИ, МЕТОДЫ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ 84.5 KB
Теория и методика обучения информатики ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРИ ИЗУЧЕНИИ ИНФОРМАТИКИ МЕТОДЫ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ. Общие методические рекомендации и принципы обучения информатике. Принцип освоения методики самообучения. Методы обучения с использованием ИКТ Методы обучения система взаимодействия преподавателя и обучаемого с использованием ИКТ обеспечивающая усвоение образовательной программы.
32503. ОРГАНИЗАЦИЯ ПРОВЕРКИ И ОЦЕНКИ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ. ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ И ХАРАКТЕРИСТИКА МЕТОДОВ КОНТРОЛЯ. ОСНОВНЫЕ ФОРМЫ КОНТРОЛЯ. МОДЕЛЬ НЕПРЕРЫВНОГО КОНТРОЛЯ. ШКАЛЫ ОЦЕНОК 92.5 KB
ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ И ХАРАКТЕРИСТИКА МЕТОДОВ КОНТРОЛЯ. ОСНОВНЫЕ ФОРМЫ КОНТРОЛЯ. МОДЕЛЬ НЕПРЕРЫВНОГО КОНТРОЛЯ. В ходе контроля оценивается степень и уровень обученности.
32504. ПРЕПОДАВАНИЕ ПРОПЕДЕВТИЧЕСКОГО КУРСА ИНФОРМАТИКИ В НАЧАЛЬНЫХ КЛАССАХ СРЕДНИХ УЧЕБНЫХ ЗАВЕДЕНИЙ 58 KB
Целью курса информатики в начальной школе является формирование первоначальных базовых понятий информатики что обеспечит дальнейшее создание информационной картины мира представлений о свойствах информации способах работы с ней формирование представления о компьютере как универсальной информационной машине развитие информационной культуры ребенка и интеллектуальных способностей учащихся. В соответствии с целями обучения информатике в начальной школе выделяется ряд задач на которые нужно опираться при проведении уроков информатики в...

Сети электросвязи. Основные понятия и определения

· Под информацией

сообщением .

Любое сообщение имеет информационный параметр

Например звуковые колебания коэффициент отражения и т.д.

непрерывным .

Пример:

дискретного сообщения .

Примеры

сигналом .

электросвязью .

Структурная схема системы электросвязи

Для передачи сообщений средствами электросвязи между источником сообщения и получателем организуется система электросвязи (рис.1.3.).

· Система электросвязи – совокупность технических средств и среды распространения сигналов, обеспечивающих передачу сообщений от источника к получателю.

Сообщение от источника информации (ИИ) (люди, датчики, ЭВМ) поступает на вход преобразователя, где преобразуется в первичный электрический сигнал (микрофон, телеграфный ключ, видеокамера). В передатчике первичный сигнал преобразуется к виду, пригодному для передачи через среду распространения (проводная, открытое пространство). В процессе передачи электрический сигнал искажается в результате воздействия источника помех . Приемник выделяет из суммы вторичного сигнала и помехи только вторичный электрический сигнал и преобразует в первичный. В преобразователе (телефон, ЭЛТ, записывающее устройство) первичный электрический сигнал преобразуется в копию передаваемого сообщения, которое поступает к получателю сообщения. Передатчик, линия связи и приемник образуют канал связи.


Рис.1.3 Структурная схема системы электросвязи

Виды электросвязи, понятие сети, службы и услуги электросвязи

Неоднородность передаваемых сообщений привели к созданию нескольких видов электросвязи. На рис.1.4. представлена классификация современных видов электросвязи.

Рис.1.4. Классификация современных видов электросвязи.

Основные понятия и определения. Человечество не может создавать материальные блага, не воздействуя на природу и не осуществляя передачу, запись и хранение информации.

· Под информацией понимается совокупность сведений о каком-либо событии, о состоянии некоторой материальной системы.

· Форма представления информации называется сообщением .

Любое сообщение имеет информационный параметр , в изменении которого "заложена" информация, содержащаяся в сообщении.

Например : у звуковых сообщений информационный параметр – звуковые колебания . Для неподвижных изображений информационный параметр – коэффициент отражения и т.д.

· Если информационный параметр может принимать любые значения в некотором интервале, то сообщение называется непрерывным .

Пример: звуковые сообщения, полутоновые изображения.

· Конечное число возможных информационных параметров является признаком дискретного сообщения .

Примеры : текстовые сообщения, цифровые сообщения.

Для передачи сообщений на расстояние используются физические процессы. Такими процессами могут быть звуковые или электромагнитные волны, электрический ток.

· Физический процесс, отображающий передаваемое сообщение, называется сигналом .

Из множества возможных физических параметров сигнала (например: амплитуда, частота, фаза и т.д.) для отображения изменения передаваемого сообщения используется один или несколько параметров этого сигнала. Эти параметры называются представляющими.

Характер изменения представляющих параметров сигнала во времени позволяют ввести следующие математические модели сигнала :

1) аналоговый сигнал – сигнал, у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений (рис 1.1);

2) дискретный по уровню сигнал – сигнал, у которого значения представляющих параметров задается функцией непрерывного времени с конечным множеством возможных значений (рис. 1.2). Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал – сигнал, у которого каждый представляющий параметр задается функцией дискретного времени с непрерывным множеством возможных значений;

4) цифровой сигнал – сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений.

· Передача и прием сообщений любого рода с помощью электрических сигналов называется электросвязью .

Электрические сигналы распространяются со скоростью 3*10 8 м /с.

Всякий электрический сигнал представляет собой изменяющуюся во времени электрическую величину, следовательно, может быть выражен функцией времени. Наиболее простой электрический сигнал гармонический – изменяющийся по закону синуса. Реальные сигналы сложны, их можно представить совокупностью ряда гармонических составляющих (гармоник).

· Совокупность составляющих, соответствующих одному сигналу принято называть спектром этого сигнала.

· Интервал частот, охватывающий все составляющие сигнала, называется шириной спектра сигнала.

Телефонные сигналы, сигналы звукового вещания, телевидения и др. являются сложными и состоят из большого числа гармонических составляющих. Например: спектр речевого сигнала составляет 8 ...12 кГц, сигналы вещания при передаче музыки занимают спектр частот 16….20 кГц.


Рис.1.1. Непрерывный сигнал Рис.1.2. Дискретный сигнал

Канал тональной частоты (КТЧ)

· Канал передачи – совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот с определенной скоростью передачи между двумя СС, СУ или между СС СУ (рис.1.10.)

Канал передачи называется типовым, поскольку его параметры нормализованы (полоса частот или скорость передачи).

Существует несколько типовых каналов передачи, предназначенных для передачи различных сообщений.



Рассказать друзьям