Регистровая память. Последовательностные функциональные узлы. Регистры и регистровая память. На что способна ECC-память и как это работает

💖 Нравится? Поделись с друзьями ссылкой

Приветствую вас, мои дорогие читатели. Предметом нашей сегодняшней беседы будет регистровая память. Большинство из вас скорей всего впервые слышат этот термин, поскольку обычные пользовательские компьютеры не имеют к нему никакого отношения. А раз так, то логично предположить, что такой модуль обладает какими-то дополнительными или незаурядными возможностями.

Речь идет о разновидности оперативной памяти, и вы скажете, что неплохо было бы ее заполучить и опробовать в деле. Но давайте не будем спешить. Дочитайте статью до конца и вы, узнаете не только, что это за память, но и что с ней можно и что нельзя делать.

Для начала определимся с терминами.

Регистровая память (Registered Memory) обозначается аббревиатурой RDIMM, так как является разновидностью обычной DIMM памяти, которую мы хорошо знаем как DDR2, DDR3, DDR4.

Соответственно нерегистровую память называют, unregistered DRAM или UDIMM. Так же регистровую память именуют буферной, что справедливо в отношении принципа ее работы.

Для чего нужны регистры?

Теперь вспомним, как работает ОЗУ. Данные загружаются в нее с жесткого диска, но команды на выполнение этих действий идут из центрального процессора. А точнее из контроллера памяти, который напрямую связан с чипами оперативки. При работе обычных компьютеров (даже игровых) все процессы происходят в штатном режиме.

Но вот в серверах интенсивность обращений к оперативке намного выше, причем одновременно может обрабатываться множество невзаимосвязанных запросов. Очевидно, что при этом может быть задействовано сразу несколько микросхем ОЗУ, что приводит к повышению токовой нагрузки на контроллер и увеличивает риск выхода его из строя.

Чтобы повысить надежность системы «Оперативная память – Контроллер» между ними интегрируется регистровый модуль, в котором происходит предварительная буферизация информации при ее чтении или записи. Сам этот чип располагается непосредственно на планке оперативной памяти, которая поэтому и называется регистровой.

Как опознать RDIMM?

Выходит, у регистровой памяти отличие от обычной в дополнительной микросхеме, спросите вы? Конечно да, но не спешите заниматься подсчетом чипов.

Дело в том, регистровая память используется исключительно как серверная. А значит, в ней обязательно должна быть реализована технология ECC (error-correcting code memory), назначение которой ˗ коррекция ошибок в считываемой из ОЗУ информации. Специальный процессор, так же установленный на плашке оперативки, сверяя её с исходными данными, записанными в память, и способен при этом обнаружить несоответствие бита в одном машинном слове.

Обычно на 8 микросхем ОЗУ идет один модуль ECC и один регистровый, который, кстати, отличается меньшими размерами. Зная это, при беглом взгляде на планку памяти можно подсчитать общее количество чипов и сделать вывод о том обычная это оперативка или нет.

Чтобы не запутаться в подсчёте микросхем я все-таки предлагаю обращать внимание на маркировку, по которой вы легко определите регистровую память. Просто прочитайте, что написано в конце: если есть символы «R» или «REG» то это она.

Необычные качества регистровой памяти

Теперь поговорим об особенностях регистровой памяти. Это полезная информация, особенно для тех, кто возжелал с ее помощью апгрейдить свой ПК:

Дополнительный буферный элемент в структуре связи между ОЗУ и контроллером влияет на быстродействие памяти, ведь каждое обращение к регистрам производится потактово. А значит, на величину такта такая память будет медленнее обычной. Если сравнивать с SDRAM то задержка имеет место для начального цикла запросов.

  • Я уже сказал, что регистровая память предназначена исключительно для работы на серверах. Если быть более точным, то на материнских платах, созданных для них. Поэтому не пытайтесь вдулить ее на обычную материнку. Хотя, если «мать» поддерживает такую возможность (а это можно уточнить в ее паспорте), то почему бы и нет. Опять-таки, если ваш ПК выполняет функции сервера или используется для удаленной работы – такое решение добавить надежности вполне оправдано.
  • Главное преимущество регистровой памяти ˗ повышение эффективности работы контроллера с множеством модулей оперативной памяти. С RDIMM вы получаете масштабируемую систему, которая при соответствующей поддержке процессора может работать в трех или четырех канальном режиме. А это существенный прирост скорости считывания данных и производительности (хотя и приходится снижать рабочую частоту ОЗУ). На практике это отлично реализуется в серверных материнских платах типа SuperMicro X9DR3-LN4F+, где вы можете задействовать все 24 RAM-слота.

  • Планируя наращивать объем памяти для многоканального режима помните о том, что совместная работа модулей RDIMM и UDIMM не только невозможна, но и недопустима. Так что лучше сразу подобрать аналоги для существующей регистровой памяти с таким же объемом, частотой и .

Вот такая она, регистровая память.

Нравится вам это, или нет, но она не для всех. Да, она и по цене дороже, и в продаже встречается не так часто. Но главное, у нее узкая серверная специализация. Но, друзья, согласитесь, RDIMM это очень интересный объект, изучив который вы не только повысили уровень своих компьютерных знаний, но и получили дополнительную информацию о работе оперативки.

На этом я заканчиваю нашу беседу и желаю вам всем процветания и успехов.

Аннотация: Рассматривается принцип действия регистров как элементов электронной памяти.

Регистр - это ИМС средней степени интеграции, предназначенная для запоминания и хранения многоразрядного слова .

Регистр-защелка

Простейший регистр представляет собой параллельное соединение нескольких триггеров (рис. 8.1 ,а). УГО регистра-защелки приведена на рис. 8.1 ,б. Если регистр построен на триггерах-защелках, то его называют регистр- "защелка". Как правило, в состав ИС регистра входят буферные усилители и элементы управления, например как показано на рис. 8.2 ,а. Здесь изображена функциональная схема 8-разрядного D -регистра-защелки КР580ИР82 с тремя состояниями на выходе. Его УГО представлено на рис. 8.2 ,б.


Рис. 8.1. Четырёх-разрядный регистр-"защелка" с прямыми выходами: а - функциональная схема; б - УГО

Третьим состоянием (первые два - это логический 0 и логическая 1) называется состояние выходов ИС, при котором они отключены и от источника питания, и от общей точки. Другие названия этого состояния - состояние высокого сопротивления, высокоимпедансное состояние, Z-состояние [ , с. 61 - 63; , с. 68 - 70].

Достигается это третье состояние специальным схемным решением [ , с. 117 - 118] в выходной части логических элементов, когда выходные транзисторы логических элементов заперты и не подают на выход ни напряжения питания, ни потенциала земли (не 0 и не 1).

Регистр КР580ИР82 состоит из 8 функциональных блоков (рис. 8.2 ,а). В каждый из них входит D -триггер-защелка с записью по заднему фронту и мощный выходной вентиль на 3 состояния. STB - стробирующий вход, - разрешение передачи - сигнал, управляющий третьим состоянием: если , то происходит передача информации со входов на соответствующие выходы , если же , все выходы переводятся в третье состояние. При и ИС работает в режиме шинного формирователя - информация со входов передается на выходы в неизменном виде.

При подаче на заднего фронта сигнала происходит "защелкивание" передаваемой информации в триггерах, то есть там запоминается то, что было на момент подачи . Пока , буферный регистр будет хранить эту информацию, независимо от информации на D -входах. При подаче переднего фронта при сохранении состояние выходов будет изменяться в соответствии с изменением на соответствующих входах . Если же , то все выходные усилители переводятся в третье состояние. При этом, независимо от состояния входов, все выходы регистра переводятся в третье состояние.

Все выводы регистра могут иметь активный нулевой уровень, что отображается на УГО в виде инверсных сигналов и обозначений выводов.

Существует множество разновидностей регистров , например, сдвиговые регистры [ , глава 8], в которых триггеры соединены между собой таким образом, что передают информацию последовательно от одного триггера к другому [ , стр. 109 - 122], но мы здесь остановимся на регистре-защелке и его применении.

Регистровая память

Регистровая память - register file - это сверхоперативное запоминающее устройство (СОЗУ) - схема из нескольких регистров, предназначенная для хранения нескольких многоразрядных слов .

На рис. 8.3 показан пример реализации СОЗУ , состоящего из четырех 8-разрядных регистров (подключение RG2 и RG3 не показано, оно осуществляется аналогично). Данное СОЗУ имеет информационный объем 4x8 бит - 4 слова по 8 бит, или 4 байта. Здесь DI - data input - входная шина данных, DO - data output - выходная шина данных, WR - сигнал записи в СОЗУ, RD - сигнал чтения информации из СОЗУ, ВШД - внутренняя шина данных.

Каждый регистр имеет двухразрядный адрес, который подается на входы дешифратора. Например, крайний левый на рис. 8.3 регистр RG1 имеет адрес , следующий - (не показан на рисунке), далее - (не показан), а крайний справа регистр RG4 имеет адрес .

При наличии активного сигнала записи дешифратор в соответствии с кодом адреса выдает на один из регистров активный сигнал , по которому информация с входной шины данных DI записывается в выбранный регистр . По заднему фронту информация в этом регистре "защелкивается".

Если, например, на DI подана информация , и адрес регистра равен , тогда активный сигнал на выходе "3" дешифратора будет подан как на регистр RG4. На остальных регистрах в это время будет неактивный уровень сигнала , поэтому информация с входной шины данных будет записана в RG4, в остальных регистрах будет храниться записанная ранее информация.

При активном сигнале чтения активизируются все 8 мультиплексоров (на схеме показаны первый, второй и восьмой, остальные подключены аналогичны), поскольку на их разрешающие входы подан активный сигнал . В соответствии с поданным на дешифратор адресом , мультиплексоры коммутируют на выходную шину данных информацию с выбранного регистра. Например, , адрес регистра равен . Тогда на всех мультиплексорах будет , все они начинают выбирать информацию в соответствии с адресом . Поэтому на выходную шину DO будут поданы разряды внутренней шины с номерами 25 - с первого мультиплексора, 26 - со второго, 27 - с третьего, 28 - с четвертого, 29 - с пятого, 30 - с шестого, 31 - с седьмого и 32 - с восьмого мультиплексора. Таким образом, информация, являющаяся копией содержимого регистра RG 4 с адресом передается на выходную шину данных DO - неизменное состояние выхода мультиплексора.

Всё больше людей сталкиваются с проблемой несовместимости оперативной памяти с компьютером. Устанавливают память, а она не работает и компьютер не включается. Многие пользователи просто не знают, что существуют несколько типов памяти и какой именно тип подходит к их компьютеру, а какой нет. В данном руководстве я кратко раскажу из личного опыта об оперативной памяти и где каждая применяется.

Вы не знаете что значит U в маркировке оперативной памяти, что значит E , что значит R или F ? Этими буквами обозначается тип памяти - U (Unbuffered, небуферизированная), E (память c коррекцией ошибок, ECC), R (регистровая память, Registered), F (FB-DIMM, Fully Buffered DIMM - полностью буферизованная DIMM). Теперь рассмотрим все эти типы подробнее.

Типы памяти используемые в компьютерах:

1. Небуферизированная память . Обычная память для обычных настольных компьютеров, её ещё называют UDIMM. На планке памяти как правило имеется 2, 4, 8 или 16 микросхем памяти с одной или двух сторон. У такой памяти маркировка обычно заканчивается буквой U (Unbuffered) или вообще без буквы, например DDR2 PC-6400, DDR2 PC-6400U, DDR3 PC-8500U или DDR3 PC-10600. А у памяти для ноутбуков маркировка заканчивается буквой S, видимо это сокращение от SO-DIMM, например DDR2 PC-6400S. Фото небуферизированной памяти можно видеть ниже.

2. Память c коррекцией ошибок (Память с ECC ). Обычная Небуферизованная память с коррекцией ошибок. Такая память ставится обычно в фирменные (брендовые) компьютеры продаваемые в Европе (НЕ СЕРВЕРА), плюсом этой памяти является её большая надёжность при работе. Большинство ошибок при работе памяти удаётся исправить во время работы, даже если они появляются, не теряя данные. Обычно на каждой планке такой памяти 9 или 18 микросхем памяти, добавляется одна или 2 микросхемы. Большинство обычных компьютеров (не серверов) и материнских плат могут работать с ECC памятью. У такой памяти маркировка как правило заканчивается буквой E (ECC), например DDR2 PC-4200E, DDR2 PC-6400E, DDR3 PC-8500E или DDR3 PC-10600E. Фото небуферизированной памяти c ECC можно видеть ниже.

Различие памяти с ECC и памяти без ECC можно видеть на фото:

Хоть большинство продаваемых плат и поддерживают эту память, но совместимость с конкретной платой и процессором лучше узнать заранее до покупки. Из личного опыта 90-95% материнских плат и процессоров могут работать с памятью ECC. Из тех, что НЕ могут работать: платы на чипсетах Intel G31, Intel G33, Intel G41, Intel G43, Intel 865PE. Все материнские платы и процессоры начиная с первого поколения Intel Core все могут работать с ECC памятью и от материнских плат это не зависит. Под AMD процессоры вообще практически все материнские платы могут работать с ECC памятью, за исключением случаев индивидуальной несовместимости (такое бывает в редчайших случаях).

3. Регистровая память (Registered). СЕРВЕРНЫЙ тип памяти. Обычно он всегда выпускается с ECC (коррекцией ошибок) и c микросхемой "Буфером" . Микросхема "буфер" позволяет увеличить максимальное количество планок памяти, которые можно подключить к шине не перегружая её, но это уже лишние данные, не будем углубляться в теорию. В последнее время понятия буферизованный и регистровый почти не различают. Если утрировать: регистровая память = буферизованная. Эта память работает ТОЛЬКО на серверных материнских платах способных работать с памятью черем микросхему "буфер".

Обычно на планках регистровой памяти с ECC установлено 9, 18 или 36 микросхем памяти и ещё 1, 2 или 4 микросхемы "буфера" (они обычно в центре, отличаются по габаритам от микросхем памяти). У такой памяти маркировка как правило заканчивается буквой R (Registered), например DDR2 PC-4200R, DDR2 PC-6400R, DDR3 PC-8500R или DDR3 PC-10600R. Ещё в маркировке регистровой (серверной) (буферизированной) памяти обычно присутствует сокращение слова Registered - REG . Фото буферизированной (регистровой) памяти c ECC можно видеть ниже.

Помните! Регистровая память с ECC со 100% вероятностью НЕ РАБОТАЕТ на обычных материнских платах . Она работает только на серверах!

4. FB-DIMM Fully Buffered DIMM (Полностью буферизованная DIMM), - стандарт компьютерной памяти, который используется для повышения надёжности, скорости, и плотности подсистемы памяти. В традиционных стандартах памяти линии данных подключаются от контроллера памяти непосредственно к линиям данных каждого модуля DRAM (иногда через буферные регистры, по одной микросхеме регистра на 1-2 чипа памяти). С увеличением ширины канала или скорости передачи данных, качество сигнала на шине ухудшается, усложняется разводка шины. Это ограничивает скорость и плотность памяти. FB-DIMM использует другой подход для решения этих проблем. Это дальнейшее развитие идеи registered модулей - Advanced Memory Buffer осуществляет буферизацию не только сигналов адреса, но и данных, и использует последовательную шину к контроллеру памяти вместо параллельной.

Модуль FB-DIMM имеет 240 контактов и одинаковую длину с другими модулями DDR DIMM, но отличается по форме выступов. Подходит только для серверных платформ.

Спецификации FB-DIMM, как и другие стандарты памяти, опубликованы JEDEC .

Компания Intel использовала память FB-DIMM в системах с процессорами Xeon серий 5000 и 5100 и новее (2006-2008 годы). Память FB-DIMM поддерживается серверными чипсетами 5000, 5100, 5400, 7300; только с процессорами Xeon, основанными на микроархитектуре Core (сокет LGA771).

В сентябре 2006 года компания AMD также отказалась от планов по использованию памяти FB-DIMM.

Если Вы затрудняетесь с выбором памяти для своего компьютера, то уточните у продавца сообщив ему модель материнской платы и модель процессора.

P.S.: В последнее время появился ещё один дешевый и интересный тип памяти - я её называю "Китайская Подделка". Кто ещё не сталкивался - расскажу. Это такая память, которую можно всегда узнать по её контактам, обычно они окисленные и даже если их очистить, то за месяц-два они опять окисляются, становятся мутными, грязными и память при этом может сбоить или совсем не работать. Золотом на контактах этой памяти даже и не пахнет. Ещё одним отличием этой памяти от оригинальной является то, что она работает на определённых материнских платах или процессорах, например ТОЛЬКО на АМД, или только строго на каких-то чипсетах. Причём перечень этих чипсетов очень мал. В чём секрет этой "памяти" мне пока не ясно, но многие покупают - ведь она на 40-50% дешевле аналогичной. И что самое удивительное, новая "Китайская Подделка" обычно стоит дешевле оригинальной памяти Б/У:) Надёжность и долговечность работы рассказывать не буду, тут и так всё ясно.

Registered Memory, RDIMM , иногда buffered memory ) - вид компьютерной оперативной памяти , модули которой содержат регистр между микросхемами памяти и системным контроллером памяти . Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных микросхем. Обычно используется в системах, требующих масштабируемости и отказоустойчивости в ущерб дешевизне (например - в серверах). Хотя большая часть модулей памяти для серверов является регистровой и использует ECC , существуют и модули с ECC но без регистров (UDIMM ECC), они так же в большинстве случаев работоспособны и в десктопных системах. Регистровых модулей без ECC не существует.

Из-за использования регистров возникает дополнительная задержка при работе с памятью. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая (UDIMM , unregistered DRAM). Для памяти SDRAM эта задержка существенна только для первого цикла в серии запросов (burst).

Буферизации в регистровой памяти подвергаются только сигналы управления и выставления адреса.

Буферизованная память (Buffered memory ) - более старый термин для обозначения регистровой памяти.

Некоторые новые системы используют полностью буферизованную память FB-DIMM , в которой производится буферизация не только управляющих линий, но и линий данных при помощи специального контроллера AMB, расположенного на каждом модуле памяти.

Техника регистровой памяти может применяться к различным поколениям памяти, например: DDR DIMM , DDR2 DIMM , DDR3 DIMM

Напишите отзыв о статье "Регистровая память"

Примечания

Литература

  • Memory systems: cache, DRAM, disk; раздел 10.3.3 Registered Memory Module (DIMM)

Ссылки

  • // ixbt

Отрывок, характеризующий Регистровая память

– Дурак! скотина! – закричал Пьер, что редко с ним случалось, ругая своего кучера. – Домой я велел; и скорее ступай, болван. Еще нынче надо выехать, – про себя проговорил Пьер.
Пьер при виде наказанного француза и толпы, окружавшей Лобное место, так окончательно решил, что не может долее оставаться в Москве и едет нынче же в армию, что ему казалось, что он или сказал об этом кучеру, или что кучер сам должен был знать это.
Приехав домой, Пьер отдал приказание своему все знающему, все умеющему, известному всей Москве кучеру Евстафьевичу о том, что он в ночь едет в Можайск к войску и чтобы туда были высланы его верховые лошади. Все это не могло быть сделано в тот же день, и потому, по представлению Евстафьевича, Пьер должен был отложить свой отъезд до другого дня, с тем чтобы дать время подставам выехать на дорогу.
24 го числа прояснело после дурной погоды, и в этот день после обеда Пьер выехал из Москвы. Ночью, переменя лошадей в Перхушкове, Пьер узнал, что в этот вечер было большое сражение. Рассказывали, что здесь, в Перхушкове, земля дрожала от выстрелов. На вопросы Пьера о том, кто победил, никто не мог дать ему ответа. (Это было сражение 24 го числа при Шевардине.) На рассвете Пьер подъезжал к Можайску.
Все дома Можайска были заняты постоем войск, и на постоялом дворе, на котором Пьера встретили его берейтор и кучер, в горницах не было места: все было полно офицерами.
В Можайске и за Можайском везде стояли и шли войска. Казаки, пешие, конные солдаты, фуры, ящики, пушки виднелись со всех сторон. Пьер торопился скорее ехать вперед, и чем дальше он отъезжал от Москвы и чем глубже погружался в это море войск, тем больше им овладевала тревога беспокойства и не испытанное еще им новое радостное чувство. Это было чувство, подобное тому, которое он испытывал и в Слободском дворце во время приезда государя, – чувство необходимости предпринять что то и пожертвовать чем то. Он испытывал теперь приятное чувство сознания того, что все то, что составляет счастье людей, удобства жизни, богатство, даже самая жизнь, есть вздор, который приятно откинуть в сравнении с чем то… С чем, Пьер не мог себе дать отчета, да и ее старался уяснить себе, для кого и для чего он находит особенную прелесть пожертвовать всем. Его не занимало то, для чего он хочет жертвовать, но самое жертвование составляло для него новое радостное чувство.

Существует два основных типа оперативной памяти (ОЗУ); это буферизованная память — или регистровая память — и небуферизованная память. Небуферизованная память быстрее, и чаще значительно дешевле, чем буферизованная память. Таким образом — это тип модуля, который можно найти практически во всех домашних настольных и портативных компьютерах. Буферизованная память более дорогая, чем небуферизованный тип, и она также медленнее из-за того, как она обрабатывает хранение и восстановление данных.
Буферизованная память, однако, намного более стабильна, чем небуферизованные формы, поэтому она используется в основном на компьютерах с мейнфреймом и в серверах.

Небуферизованная память на сегодняшний день является наиболее распространенной формой модуля памяти компьютера, который можно найти в повседневном использовании. Эти модули памяти дешёвые для производства по сравнению с буферизованными модулями памяти, частично из-за их общего использования на домашних и коммерческих компьютерах, а также из-за того, что используется меньше аппаратного обеспечения. В небуферизованном модуле памяти нет встроенного оборудования для работы в качестве регистра для инструкций между чипом RAM и контроллером памяти компьютера. Это приводит к более быстрой скорости работы, но увеличивает риск критической ошибки потери памяти, возникающей из-за случайного характера размещения и восстановления информации, особенно в периоды интенсивной активности.

Чаще всего именуемая зарегистрированной памятью является буферизованной памятью. Небуферизованная память, как ни странно, сохранила своё имя и не была изменена на незарегистрированную память. Буферизованная память отличается от небуферизованного типа тем, что в ней имеется аппаратный регистр, который хранит информацию в кеше за один такт работы микросхемы памяти. Хотя эта операция может привести к более медленному времени работы микросхемы памяти, она обеспечивает дополнительную стабильность и снижает риск ошибок памяти.

В общем бытовом использовании разница в скорости между двумя типами модулей памяти кажется незначительной. В периоды интенсивного обмена информацией проявляется латентность, наблюдаемая с помощью регистра. Буферизованная память обычно используется в серверных компьютерах и системах мейнфреймов для обеспечения стабильности и защиту от повреждения, которая может возникать в небуферизованных модулях, когда они подвергаются постоянному интенсивному использованию. Хотя буферизованные модули являются более дорогими и, как правило, более медленными в работе, стабильность памяти и безопасность данных более чем компенсируются в рабочей среде.



Рассказать друзьям