Механическая мощность формула и определение. Мощность — физическая величина, формула мощности. Что такое активная и реактивная мощность переменного электрического тока? Физическая мощность

💖 Нравится? Поделись с друзьями ссылкой

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность -- физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д. ), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность -- это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в (Вт ).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с , однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность -- это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт ), а в вольт-амперах реактивных (Вар ).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной ) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода ), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи )– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100% ). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА ).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.


Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Мощность - физическая величина, равная отношению проделанной работы к определенному промежутку времени.

Существует понятие средней мощности за определенный промежуток времени Δt . Средняя мощность высчитывается по этой формуле: N = ΔA / Δt , мгновенная мощность по следующей формуле: N = dA / dt . Эти формулы имеют довольно обобщенный вид, так как понятие мощности присутствует в нескольких ветках физики - механике и электрофизике. Хотя основные принципы расчета мощности остаются приблизительно такими же, как и в общей формуле.

Измеряется мощность в ваттах. Ватт - единица измерения мощности, равная джоулю, деленному на секунду. Кроме ватта, существуют и другие единицы измерения мощности: лошадиная сила, эрг в секунду, масса-сила-метр в секунду.

    • Одна метрическая лошадиная сила равна 735 ваттам, английская - 745 ватт.
    • Эрг - очень малая единица измерения, один эрг равен десять в минус седьмой степени ватт.
    • Один масса-сила-метр в секунду равен 9,81 ваттам.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

    • Низкочастотные
    • Радиочастотные
    • Оптические

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Мощность в механике

Мощность в механике напрямую зависит от силы и работы, которую эта сила выполняет. Работа же является величиной, характеризующей силу, приложенную к какому-либо телу, под действием которой тело проходит определенное расстояние. Мощность высчитывается по скалярному произведению вектора скорости на вектор силы: P = F * v = F * v * cos a (сила, умноженная на вектор скорости и на угол между вектором силы и скорости (косинус альфа)).

Так же можно посчитать мощность вращательного движения тела. P = M * w = π * M * n / 30 . Мощность равна (М) моменту силы, умноженному на (w) угловую скорость или пи (п), умноженному на момент силы (М) и (n) частоту вращения, деленных на 30.

Мощность в электрофизике

В электрофизике мощность характеризует скорость передачи или превращения электроэнергии. Различают такие виды мощности:

    • Мгновенная электрическая мощность. Так как мощность - это работа, проделанная за определенное время, а заряд движется по определенному участку проводника, имеем формулу: P(a-b) = A / Δt . А-В характеризует участок, через который проходит заряд. А - работа заряда или зарядов, Δt - время прохождения зарядом или зарядами участка (А-В). По этой же формуле высчитываются и другие значения мощности для разных ситуаций, когда нужно измерить мгновенную мощность на отрезке проводника.

    • Так же можно посчитать мощность постоянного потока: P = I * U = I^2 * R = U^2 / R .

    • Мощность переменного тока не поддается исчислению по формуле постоянного тока. В переменном токе выделяют три вида мощности:
      • Активная мощность (Р), которая равна P = U * I * cos f . Где U и I действующие параметры тока, а f (фи) угол сдвига между фазами. Данная формула приведена как пример для однофазного синусоидального тока.
      • Реактивная мощность (Q) характеризует нагрузки, создаваемые в устройствах колебаниями электрического однофазного синусоидального переменного тока. Q = U * I * sin f . Единица измерения - вольт-ампер реактивный (вар).
      • Полная мощность (S) равна корню квадратов активной и реактивной мощности. Измеряется в вольт-амперах.
      • Неактивная мощность - характеристика пассивной мощности присутствующей в цепях с переменным синусоидальным током. Равна квадратному корню суммы квадратов реактивной мощности и мощности гармоник. При отсутствии мощности высших гармоник равна модулю реактивной мощности.

Важнейшей задачей статистики оборудования является измерение мощности двигателей предприятия. Мощностью двигателя называется его способность выполнять определенную работу за единицу времени (секунду). Основной единицей измерения мощности является киловатт (кВт). Поскольку энергетическое оборудование предприятия может включать двигатели, мощность которых выражается в различных единицах, суммарная мощность всех двигателей выражается в киловаттах. Для этого пользуются такими постоянными соотношениями:

Мощность двигателей можно охарактеризовать с разных точек зрения.

в Зависимости от конструкции двигателя мощности различают теоретическую, индикаторную и эффективную (настоящую).

Мощность теоретическая (#) определяется путем расчетов, исходя из предположения об отсутствии в двигателе механических потерь (от трения) и тепловых потерь (от излучения). Теоретическая мощность может быть вычислена для любых двигателей.

Мощность индикаторная (#/вс) - мощность двигателя с учетом тепловых, но без учета механических потерь. Измеряется М.нд на том органе двигателя, где заканчиваются потери от излучения.

Третьим видом конструктивных мощностей является мощность эффективная (Г Это действительная мощность, учитывающий потери теплового и механического характера. Измеряется на рабочем валу двигателя.

в Зависимости от интенсивности работы двигателя мощность его может меняться, поэтому различают такие мощности с нагрузкой: нормальную (экономическую), максимально длительную и максимально короткое время.

Мощность нормальная (Л/^ г) является мощностью, при которой двигатель наиболее экономно расходует топливо и энергию на единицу силы, то есть имеет самый высокий коэффициент полезного действия (к.п.д.). При отклонении нагрузки вверх или вниз от нормальной к. к.д. снижается.

в Основном с целью получения максимального количества энергии при эксплуатации силовых устройств для них устанавливается режим максимальной нагрузки, при котором двигатель без ущерба для своего состояния может работать неопределенно длительный период. Мощность, характерная для максимальной нагрузки большинства силовых двигателей, называется максимально длительной (Ммт{)-

Мощностью максимально кратковременной (№) называется предельная нагрузка двигателя, за которого он без аварии может работать короткое время, обычно не более 30 мин.

Все три вида мощности нагрузки являются потенциальными, поскольку определяют не действительное, а возможное нагрузки. Для полноты характеристики мощности двигателя следует одновременно учитывать его мощность, по конструкции и по нагрузке. Как правило, это будет мощность максимально длительная эффективная.

Для характеристики мощностей двигателей по эксплуатационному назначению различают присоединенную мощность, установленную, имеющуюся, пиковую, резервную, среднюю фактическую и среднегодовую.

Присоединенной мощностью (Мприсд) называется мощность всех приемников, присоединенных к электростанции, в том числе мощность электромоторов чужого тока у абонентов и электромоторов своего тока.

Крупные электростанции обеспечивают электроэнергией абонентов, имеющих различные графики нагрузки. Например, утром резко возрастает потребность в энергии производства и городского транспорта (трамвай, троллейбус), но уменьшается на освещение; в вечерние часы прекращается работа части предприятий, но резко возрастает потребность зрелищных заведений в электрической энергии. За счет неодночасного присоединения абонентов к станции присоединенная мощность обычно больше мощности станции в 2-2,5 раза. Итак, станция мощностью в 30 тыс. кВт может обслуживать абонентов, мощность приемников тока которых составляет 60 тыс. кВт и более.

Мощность установлена (л/) является общей максимально длительной эффективной мощностью установленных двигателей (для электростанции - мощность электрогенераторов).

Поскольку часть двигателей, находящихся в ремонте и ожидающих ремонта, не может быть использована, большое значение приобретает имеющаяся мощность (Мнаяві) - суммарная мощность всех устройств, за вычетом тех, что находятся в ремонте или ожидающие его.

За определенный период, например за сутки, месяц или квартал, важно определить максимум нагрузки, который называют пиковой мощностью ША.

Разница между имеющейся и пиковой мощностями называется резервной мощностью. Она состоит из двух частей, имеющих разное экономическое значение: по мощности резервных двигателей, предназначенных дня замены тех, что работают, в случае аварии, и с недогрузки двигателей, работающих в час пик.

Для многих практических расчетов определяется средняя фактическая мощность Л. Рассчитывается она для отдельного двигателя путем деления выработанной за период энергии в киловатт-часах на фактическое время работы в часах, то есть

Чтобы вычислить среднюю фактическую мощность нескольких двигателей, которые работают совместно, надо производимую ими энергию разделить на время работы всех двигателей, уменьшенный на время их совместной работы. Так, формула средней фактической мощности двух двигателей, работающих совместно в той или иной комбинации, будет иметь вид

Пример 7.1

Вычислить среднюю фактическую мощность двух двигателей, из которых первый работал с 6 до 16 часов, и произвел 630 кВт х час энергии, а второй работал с 8 до 23 часов, и произвел 715 кВт х час энергии.

Общее количество произведенной энергии: 630 + 715 = 1345 кВт х ч.

Общее время работы двигателей: (16-6) + (23-8) =25 часов.

Время совместной работы двигателей: (16-8) = 8 часов.

Кроме средней фактической мощности, вычисляют мощность среднегодовую {М), которая показывает, сколько киловатт часов энергии в среднем за год произведено в течение одного часа.

Для этого произведенная энергия делится на количество часов уроке-8760. всегда меньше, чем причем их соотношение А^УЛ^ характеризует степень использования двигателя во времени за годовой период.

На предприятиях установлены двигатели, которые выполняют различные функции: первичные двигатели производят механическую энергию, а вторичные - трансформируют механическую энергию в электрическую (электрогенераторы) или электрическую в механическую и тепловую (электромоторы и электроаппараты).

Если для определения суммарной мощности предприятия сложить мощность первичных и вторичных двигателей, то будет допущен повторный счет; кроме того, в расчет суммарной мощности должна входить только мощность, которая используется в производственном процессе. Следовательно, мощность двигателей, установленных на силовой станции предприятия, энергия которых отпускается на сторону, не следует учитывать при определении энергетической мощности определенного предприятия, поскольку она будет учтена на предприятиях - потребителях энергии.

Рис. 7.1. в

Из рис. 7.1 видно, что первичные двигатели могут непосредственно приводить в движение рабочие машины или передавать механическую энергию електрогенераторам для трансформации ее в электрическую; электроэнергия собственных электрогенераторов может быть использована как для питания электромоторов и электроаппаратов своего и смешанного тока, так и для обеспечения хозяйственных нужд предприятия. Часть электроэнергии может быть отпущена на сторону. В то же время энергия, полученная со стороны, обеспечивает работу электромоторов и электроаппаратов чужого и смешанного тока. Самостоятельно учитывается мощность первичных двигателей прямого действия и мощность транспортных двигателей. Просуммировав мощности первичных и вторичных двигателей, мы допустим двойной счет. Поэтому применяется формула вычисления энергетической мощности предприятия, которая полностью исключает повторный счет:

В общей мощности первичных двигателей №) учитывается также мощность двигателей прямого действия и тех, что используются на заводском транспорте.

Формула 7.3 не только исключает повторный счет мощности, но и разграничивает мощность механического и электрического привода.

Мощность механического привода равна разнице между мощностью всех первичных двигателей предприятия и мощностью той их части, которая обслуживает электрогенераторы (Мпд-М^^^^). Эта разница есть мощностью первичных двигателей, непосредственно связанных с рабочими машинами (с помощью трансмиссии или системы зубчатых колес).

Мощность электрического привода определяется как сумма мощностей электромоторов и электроаппаратов, то есть вторичных двигателей, которые непосредственно обслуживают производственный процесс.

Иногда при вычислении энергетической мощности предприятия мощность первичных двигателей, обслуживающих электрогенераторы Гп.д.обсл.ел.ген)> неизвестна. Чтобы ее определить, надо мощность электрогенераторов умножить на коэффициент 1,04. Происхождение этого коэффициента следующее: средний коэффициент полезного действия электрогенераторов принимаем равным 0,96, а это означает, что мощность первичных двигателей, которые их обслуживают можно получить делением мощности первичных двигателей на 0,96 или умножением на_= 1,04. 0,96

Для определения количества энергии, потребленной предприятием, пользуются формулой, аналогичной той, которая используется для вычисления суммарной мощности:

Пример 7.2

Вычислить потенциальную и среднюю фактическую мощность предприятия, зная, что предприятие работало 200 часов и мало в своем распоряжении следующее энергетическое оборудование:

^^=400+50+350 0,736+100 0,736 - 250-1,04 + 220 + 600 = І34І,2л5ж.

Для вычисления Иф необходимо определить энергию, потребленную предприятием:

Ещйпр = 80000 + 42000 o 0,736+10000 - 0,736 - 48000 o 1,04 + 42000 + 90000 = 200352 кВт.

Момщность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени

и мгновенную мощность в данный момент времени:

Интеграл от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:

Единицы измерения. В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду. механическая работа мощность электрическая

Другой распространённой, но ныне устаревшей единицей измерения мощности, является лошадиная сила. В своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, "которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются"

Соотношения между единицами мощности (см. приложение 9).

Мощность в механике . Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

где F - сила, v - скорость, - угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

M - момент силы, - угловая скорость, - число пи, n - частота вращения (число оборотов в минуту, об/мин.).

Электрическая мощность

Механическая мощность. Мощность характеризует быстроту совершения работы.

Мощность (N) - физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

Мощность показывает, какая работа совершается за единицу времени.

В Международной системе (СИ) единица мощности называется Ватт (Вт) в честь английскогоизобретателя Джеймса Ватта (Уатта), построившего первую паровую машину.

[N]= Вт = Дж / c

  • 1 Вт = 1 Дж / 1с
  • 1 Ватт равен мощности силы, совершающей работу в 1 Дж за 1 секунду или, когда груз массой 100г поднимают на высоту 1м за 1 секунду.

Сам Джеймс Уатт (1736-1819) пользовался другой единицей мощности - лошадиной силой (1 л.с.), которую он ввел с целью возможности сравнения работоспособности паровой машины и лошади.

1л.с. = 735 Вт.

Однако, мощность одной средней лошади - около 1/2 л.с., хотя лошади бывают разные.

"Живые двигатели" кратковременно могут повышать свою мощность в несколько раз.

Лошадь может доводить свою мощность при беге и прыжках до десятикратной и более величины.

Делая прыжок на высоту в 1м, лошадь весом 500кг развивает мощность равную 5 000 Вт = 6,8 л.с.

Считается, что в среднем мощность человека при спокойной ходьбе равна приблизительно 0,1л.с. т.е 70-90Вт.

При беге, прыжках человек может развивать мощность во много раз большую.

Оказывается, самым мощным источником механической энергии является огнестрельное оружие!

С помощью пушки можно бросить ядро массой 900кг со скоростью 500м/с, развивая за 0,01 секунды около 110 000 000 Дж работы. Эта работа равнозначна работе по подъему 75 т груза на вершину пирамиды Хеопса (высота 150 м).

Мощность выстрела пушки будет составлять 11 000 000 000Вт = 15 000 000 л.с.

Сила напряжения мышц человека приблизительно равна силе тяжести, действующей на него.

эта формула справедлива для равномерного движения с постоянной скоростью и в случае переменного движения для средней скорости.

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот.

На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

Электрическая мощность . Электримческая мощность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии. При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия активной мощности, равной среднему за период значению мгновенной, реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, и полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

U - это работа, выполняемая при перемещении одного кулона, а ток I - количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность "P" в одинаковой степени зависит от тока "I" и от напряжения "U", то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии - тепловую, световую, механическую и т.д.) имеет свою единицу измерения - Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы - мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность - это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними:

Q = U*I*sin(угла).

Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой "Q".

Удельная мощность . Удельная мощность - отношение мощности двигателя к его массе или др. параметру.

Удельная мощность автомобиля . Применительно к автомобилям удельной мощностью называют максимальную мощность мотора, отнесённую ко всей массе автомобиля. Мощность поршневого двигателя, делённая на литраж двигателя, называется литровой мощностью. Например, литровая мощность бензиновых моторов составляет 30…45 кВт/л, а у дизелей без турбонаддува - 10…15 кВт/л.

Увеличение удельной мощности мотора приводит, в конечном счёте, к сокращению расхода топлива, так как не нужно транспортировать тяжёлый мотор. Этого добиваются за счёт лёгких сплавов, совершенствования конструкции и форсирования (увеличения быстроходности и степени сжатия, применения турбонаддува и т. д.). Но эта зависимость соблюдается не всегда. В частности, более тяжёлые дизельные двигатели могут быть более экономичны, так как КПД современного дизеля с турбонаддувом доходит до 50 %

В литературе, используя этот термин, часто приводят обратную величину кг/л.с. или кг/квт.

Удельная мощность танков . Мощность, надёжность и другие параметры танковых двигателей постоянно росли и улучшались. Если на ранних моделях довольствовались фактически автомобильными моторами, то с ростом массы танков в 1920-х-1940-х гг. получили распространение адаптированные авиационные моторы, а позже и специально сконструированные танковые дизельные (многотопливные) двигатели. Для обеспечения приемлемых ходовых качеств танка его удельная мощность (отношение мощности двигателя к боевой массе танка) должна быть не менее 18-20 л. с. /т. Удельная мощность некоторых современных танков (см. приложение 10).

Активная мощность . Активная мощность - среднее за период значение мгновенной мощности переменного тока:

Активная мощность - это величина, которая характеризует процесс преобразования электроэнергии в какой-либо другой вид энергии. Другими словами, электрическая мощность, как бы, показывает скорость потребления электроэнергии. Это та мощность, за которую мы платим деньги, которую считает счетчик.

Активную мощность можно определить по такой формуле:

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления - активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления - активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление - необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) - примеры: лампа накаливания, электронагреватель.

Реактивное сопротивление - попеременно накапливает энергию затем выдаёт её обратно в сеть - примеры: конденсатор, катушка индуктивности.

Активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

Активная мощность: обозначение P, единица измерения: Ватт.

Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный).

Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер).

Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина.

Эти параметры связаны соотношениями:

S*S=P*P+Q*Q, cosФ=k=P/S.

Также cosФ называется коэффициентом мощности.

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока - активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт).

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например, погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. - при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

Реактивная мощность. Реактивная мощность, способы и виды (средства) компенсации реактивной мощности.

Реактивная мощность - часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке, имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме. В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами - конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором, позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Компенсация реактивной мощности. Средства компенсации реактивной мощности. Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок как средства для компенсации реактивной мощности:

  • · малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • · отсутствие вращающихся частей;
  • · простой монтаж и эксплуатация (не нужно фундамента);
  • · относительно невысокие капиталовложения;
  • · возможность подбора любой необходимой мощности компенсации;
  • · возможность установки и подключения в любой точке электросети;
  • · отсутствие шума во время работы;
  • · небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  • 1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью - асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  • 2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  • 3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор - контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.

Ещё в 18 веке мощность стали считать в лошадиных силах. До сих пор эта физическая величина употребляется для обозначения силы двигателей. Рядом с показателем мощности двигателя внутреннего сгорания в ваттах продолжают писать значение в л.с.

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность. Для характеристик энергетических условий важно, насколько быстро выполняется процесс. Работа, реализуемая в единицу времени, именуется мощностью:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об./мин.».

Зависимость между электрическим током и мощностью

В электротехнике работой будет U – напряжение, которое перемещает 1 кулон, количество перемещаемых в единицу времени кулонов – это ток (I). Мощность электротока или электрическую мощность P получают, умножив ток на напряжение:

Это полная работа, выполненная за 1 секунду. Зависимость здесь прямая. Изменяя ток или напряжение, изменяют мощность, расходуемую устройством.

Одинакового значения Р добиваются, варьируя одну из двух величин.

Определение единицы измерения мощности тока

Единица измерения мощности тока носит имя Джеймса Ватта, шотландского инженера-механика. 1 Вт – это мощность, которую вырабатывает ток 1 А при разности потенциалов 1 В.

К примеру, источник при напряжении 3,5 В создаёт в цепи ток 0,2 А, тогда мощность тока получится:

P = U*I = 3,5*0,2 = 0,7 Вт.

Внимание! В механике мощность принято изображать буквой N, в электротехнике – буквой P. В чем измеряется n и P? Независимо от обозначения, это одна величина, и измеряется она в ваттах «Вт».

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность? Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила». В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке. Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Мощность в бытовых электрических приборах

Для нагрева металла нити накаливания лампочки, увеличения температуры рабочей поверхности утюга или иного бытового прибора, тратится определённое количество электроэнергии. Её величину, отбираемую нагрузкой за час, считают потребляемой мощностью этого аппарата.

Внимание! Если на лампочке написано «40 W, 230 V», это значит, что за 1 час она потребляет из сети переменного тока 40 Вт. Зная количество лампочек и параметры, подсчитывают, сколько энергии тратится на освещение комнат в месяц.

Как перевести ватты

Так как ватт величина маленькая, в быту оперируют киловаттами, пользуются системой перевода величин:

  • 1 Вт = 0,001 кВт;
  • 10 Вт = 0,01 кВт;
  • 100 Вт = 0,1 кВт;
  • 1000 Вт = 1 кВт.

Мощность некоторых электрических приборов, Вт

Средние значения потребления электроэнергии бытовых устройств:

  • плиты – 110006000 Вт;
  • холодильники – 150-600 Вт;
  • стиральные машины – 1000-3000 Вт;
  • пылесосы – 1300-4000 Вт;
  • электрочайники – 2000-3000 Вт.

Параметры каждого бытового прибора указываются в паспорте, а также обозначаются на корпусе. Там определены точные значения для информации потребителя.

Видео



Рассказать друзьям