Двоичная арифметика сложение и умножение. Сложение двоичных чисел. Постановка целей урока

💖 Нравится? Поделись с друзьями ссылкой

роизвольное натуральное число можно единственным способом представить в виде суммы степеней двойки, например 23 = 16+4+2+1. Обозначая входящие в эту сумму степени двойки единицами, а не входящие в ее степени нулями, можно кратко обозначить эту сумму булевым набором (в другой терминологии - вектором) (10111) 2 . Индекс 2 напоминает о том, что число записано в двоичной системе. Единица, стоящая в младшем (самом левом) разряде, означает слагаемое 1, единица во втором слева разряде означает слагаемое 2, единица в третьем разряде означает 4, а нуль в четвертом разряде означает отсутствие слагаемого 8, единица в четвертом (старшем) разряде означает присутствие слагаемого 16 (в большинстве случаев разумно рассматривать только такие записи чисел в двоичной системе, в которых в старшем разряде стоит единица).

Главное достоинство двоичной системы (помимо естественности ее применения в электронной цифровой технике) - исключительная простота алгоритмов арифметических операций в ней. Таблица умножения в двоичной системе совсем не требует запоминания: любое число, умноженное на нуль дает нуль, а умноженное на единицу равно самому себе. Правило деления сводится к двум равенствам 0/1 = 0, 1/1 =1, благодаря чему деление столбиком в двоичной системе делается проще, чем в десятичной, и по существу сводится к многократному вычитанию. Таблица сложения в двоичной системе чуть сложнее таблицы умножения (в отличие от десятичной системы), так как 1+1 = (10) 2 и возникает перенос в следующий разряд.

Правило сложения двух битов в двоичной системе задается формулами x+y = 2v+u, v = x&y, u = xÅy. В силу симметрии для их проверки достаточно рассмотреть не четыре, а три случая: 0+0 = (00) 2 , 1+0=0+1= (01) 2 , 1+1 = (10) 2 . Схема, выполняющая это сложение, называется полусумматором (в англоязычной литературе: half adder) и обозначается обычно HA или FA2. Эта схема (в базисе {AND, XOR}) изображена на рисунке.

Схемы для арифметических операций над многоразрядными двоичными числами. Сложение двух n-разрядных двоичных чисел (x n ,….,x 1) 2 и (y n ,….,y 1) 2 как и в десятичной системе приводит к появлению переносов в следующий разряд, которые необходимо учитывать в вычислении. Эти переносы также равны нулю или единице (если перенос равен нулю, то в ручном вычислении он фактически не выполняется, но логическая схема обязана правильно работать и в этом случае, ведь она «не знает», какой перенос пришел из предыдущего разряда). Обозначим перенос из (i-1)-го разряда в следующий i-й разряд через w i (w 1 =0, потому что предыдущего разряда в этом случае просто нет). Тогда для вычисления z i (i-го бита результата) нужно сложить биты x i и y i и бит переноса w i . Это сложение выполняем по формулам

x i + y i +w i = 2v i +u i , v i =m(x i ,y i ,w i), u i =l(x i ,y i ,w i)

с помощью схемы FA3. Тогда z i =u i =l(x i ,y i ,w i), а следующий бит переноса w i +1 = v i =m(x i ,y i ,w i). При сложении n-разрядных чисел получается вообще говоря n+1-разрядное число. Его старший бит z n +1 = w n +1 равен последнему переносу.

Схема сложения трехразрядных чисел приведена на следующем рисунке. Аналогичным образом выглядит и схема сложения n-разрядных чисел.

Сложность указанного n-разрядного сумматора равна 5n-3. Н.П.Редькин доказал, что сумматоров для n-разрядных чисел меньшей сложности в базисе {AND,OR,XOR,NOT} не существует. Построенный сумматор является поэтому минимальной схемой. Но у этой схемы есть существенный недостаток - она имеет большую глубину. Глубиной схемы называется максимальное число ее элементов, образующих цепь, соединяющую какой-либо из входов схемы с одним из ее выходов. Например, глубина указанной выше схемы FA3 равна 3.

Глубина схемы - не менее важная характеристика схемы, чем ее сложность. Сложность логической схемы в значительной степени определяет площадь соответствующей реальной схемы, расположенной на кремниевом кристалле. Глубина же логической схемы в значительной мере определяет задержку реальной схемы, т.е. время, за которое сигнал проходит от входов схемы к ее выходам, другими словами, время, которое должно пройти после стабилизации каких-либо значений на входах схемы до того момента, когда на всех выходах схемы также стабилизируются определенные логические значения. Сложность схемы часто не имеет существенного значения, так как современные технологии позволяют разместить на кристалле очень большие схемы. А минимизация задержки схемы очень важна, так как задержка комбинационной части многотактной схемы определяет ее тактовую частоту - чем меньше задержка, тем выше частота.

Теоретически вычислить задержку реальной схемы очень сложно. Цепей элементов схемы, соединяющих ее входы с выходами (эти цепи также называют путями), обычно довольно много и задержка схемы определяется задержкой по самому плохому в определенном смысле пути, который называется критическим. Например, на схеме FA3 критический путь, вероятно, соединяет входы X или Y с выходом m. Задержка по любому пути определяется не только суммой задержек всех элементов, лежащих на этом пути (в приведенном примере она равна 3, если считать задержку каждого элемента единичной). Следует учитывать также задержку соединяющих эти элементы проводов. Задержка элемента зависит от того, между каким его входом и каким его выходом она измеряется, а также от электрических характеристик самого элемента и элементов непосредственно с ним связанных в рассматриваемой схеме, она зависит от температуры схемы и даже от того, какие логические значения подаются в рассматриваемый момент на входы этого элемента и изменяется ли (и в какую сторону) значение на его выходе. Тем не менее, хотя и не очень точно, задержку пути можно оценить как сумму задержек его элементов. Если задержки всех элементов равны, то эта величина определяется глубиной схемы. Разумеется, понятие глубины схемы можно расширить, допустив, что элементы базиса могут иметь произвольные неотрицательные задержки.

Глубина указанной выше схемы n-разрядного сумматора на первый взгляд равна 3n-2. Но внимательный анализ возможных критических путей показывает, что она на самом деле равна 2n-1. Все равно это очень много и построенная таким образом реальная схема будет иметь большую задержку. На практике используются схемы, имеющие одновременно малую сложность, не превосходящую Cn (где С - небольшая константа) и малую глубину, приблизительно равную 2log 2 n. В.М. Храпченко в 1970 г. построил схему малой сложности и глубины, асимптотически равной log 2 n (т.е. равную (1+ e(n)) log 2 n, где e(n) стремится к нулю с ростом n). Он же недавно доказал, что глубина сумматора не может быть меньше log 2 n + log 2 n (log 2 (log 2 n))). Поэтому построенная им схема имеет асимптотически минимальную глубину. Однако схема Храпченко превосходит обычные схемы только при n порядка тысячи. Тем не менее существует некоторая модификация его схемы с глубиной приблизительно равной log j n, где j = (Ö5+1)/2, и эта схема имеет глубину меньшую, чем стандартные схемы, уже начиная с n = 8. В 2008 г. М.И.Гринчук построил схему глубины не большей log 2 n+log 2 (log 2 n)+6, которая уже при малых n имеет меньшую глубину, чем все известные схемы.

Задача построения оптимальных схем для умножения n-разрядных чисел оказалась еще труднее, чем задача о построении оптимальных сумматоров. Легко построить схему для умножения n-разрядных чисел в базисе {OR,AND,XOR,NOT} сложности приблизительно равной 6n 2 . Для этого можно использовать указанную выше схему для сумматора. Однако ее глубина будет велика. В начале 60-х годов несколько исследователей (в СССР Столяров и Офман, в США Авиценис и Уоллес) независимо построили схему для умножения сложности порядка n 2 и глубины порядка log 2 n. В смысле глубины эти схемы по порядку оптимальны, но до сих пор остается нерешенной задача построения схемы для умножения асимптотически минимальной глубины. В смысле сложности эти схемы оказались далеки от оптимальных. А. А. Карацуба построил в 1962 г. схему для умножения, имеющую сложность по порядку не большую n 1,6 , потом А. Л. Тоом построил схему сложности n 1+ e(n) , где e(n) стремится к нулю с ростом n. В определенном смысле этот результат окончательный, тем не менее он был уточнен на рубеже 70-х годов немецкими математиками А. Шенхаге и Ф. Штрассеном, которые получили для схем умножения верхнюю оценку сложности по порядку не превосходящую n log 2 n log 2 (log 2 n), а в 2008 г. эту оценку улучшил американский математик М. Фюрер, заменивший двойной логарифм крайне медленно растущей функцией. Есть предположение, что сложность схемы умножения по порядку не меньше n log 2 n, но и это не доказано.

Американский математик С.Кук доказал, что можно построить схему для деления 2n-разрядного числа на n-разрядное, у которой сложность по порядку не превосходит сложности умножения n-разрядных чисел. Известно также, что нижняя оценка сложности схемы для деления по порядку не меньше нижней оценки сложности умножения. Поэтому в смысле оценок сложности деление не представляет ничего нового в сравнении с умножением. Однако долгое время наилучшей оценкой глубины деления по порядку было (log 2 n) 2 .

Впоследствии были найдены схемы для деления с глубиной по порядку равной log 2 n, но их сложность оказалась велика. Американцы Рейф и Тейт построили схемы для деления глубины по порядку не превосходящей log 2 n log 2 (log 2 n) и одновременно сложности по порядку не превосходящей n log 2 n log 2 log 2 n, однако и эти схемы, как и схемы Шенхаге-Штрассена и Фюрера пока не нашли практических применений, так как в действительности начинают превосходить используемые на практике схемы лишь при огромных значениях n.

Рекомендуемая литература

  1. О.Б. Лупанов « Асимптотические оценки сложности управляющих систем » изд. МГУ, 1984.
  2. О.Б. Лупанов «Конспект лекций по математической логике »изд. МГУ, 2009.
  3. Дж. Сэвидж «Сложность вычислений » М. изд. Факториал, 1998.
  4. Д. Кнут « Искусство программирования на компьютере», т. 2, изд. Вильямс, 2000.
  5. С.Б. Гашков «Системы счисления и их применения », М. изд. МЦНМО, 2004.
  6. С.Б. Гашков, В.Н. Чубариков «Арифметика. Алгоритмы. Сложность вычислений », изд. Дрофа, 2005.
Главная \ Документы \ Для учителя информатики

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Двоичная арифметика

Числа которыми мы привыкли пользоваться называются десятичными и арифметика которой мы пользуемся также называется десятичной. Это потому, что каждое число можно составить из набора цифр содержащего 10 символов - цифр - "0123456789".

Так шло развитие математики, что именно этот набор стал главным, но десятичная арифметика не единственная. Если мы возьмём только пять цифр, то на их основе можно построить пятиричную арифметику, из семи цифр - семиричную. В областях знаний связанных с компьютерной техникой часто используют арифметику в которой числа составляются из шестнадцати цифр, соответственно эта арифметика называется шестнадцатиричной. Чтобы понять, что такое число в не десятичной арифметике сначала выясним, что такое число в десятичной арифметике.

Возьмём, к примеру, число 246. Эта запись означает, что в числе две сотни, четыре десятка и шесть единиц. Следовательно, можно записать следующее равенство:

246 = 200 + 40 + 6 = 2 * 10 2 + 4 * 10 1 + 6 * 10 0

Здесь знаками равенства отделены три способа записи одного и того же числа. Наиболее интересна нам сейчас третья форма записи: 2 * 10 2 + 4 * 10 1 + 6 * 10 0 . Она устроена следующим образом:

В нашем числе три цифры. Старшая цифра "2" имеет номер 3. Так вот она умножается на 10 во второй степени. Следующая цифра "4" имеет порядковый номер 2 и умножается на 10 в первой. Уже видно, что цифры умножаются на десять в степени на единицу меньше порядкового номера цифры. Уяснив сказанное, мы можем записать общую формулу представления десятичного числа. Пусть дано число, в котором N цифр. Будем обозначать i-ю цифру через a i. Тогда число можно записать в следующем виде: a n a n-1 ….a 2 a 1 . Это первая форма, а третья форма записи будет выглядеть так:

a n a n-1 ….a 2 a 1 = a n * 10 n-1 + a n-1 * 10 n-2 + …. + a 2 * 10 1 + a 1 * 10 0

где a i это символ из набора "0123456789"

В этой записи очень хорошо видна роль десятки. Десятка является основой образования числа. И кстати она так и называется "основание системы счисления", а сама система счисления, поэтому так и называется "десятичной". Конечно, никакими особыми свойствами число десять не обладает. Мы вполне можем заменить десять на любое другое число. Например, число в пятиричной системе счисления можно записать так:

a n a n-1 ….a 2 a 1 = a n * 5 n-1 + a n-1 * 5 n-2 + …. + a 2 * 5 1 + a 1 * 5 0

где a i это символ из набора "01234"

В общем, заменяем 10 на любое другое число и получаем совершенно другую систему счисления и другую арифметику. Наиболее простая арифметика получается, если 10 заменить на 2. Полученная система счисления называется двоичной и число в ней определяется следующим образом:

a n a n-1 ….a 2 a 1 = a n * 2 n-1 + a n-1 * 2 n-2 + …. + a 2 * 2 1 + a 1 * 2 0

где a i это символ из набора "01"

Эта система самая простая из всех возможных, так как в ней любое число образуется только из двух цифр 0 и 1. Понятно, что проще уже некуда. Примеры двоичных чисел: 10, 111, 101.

Очень важный вопрос. Можно ли двоичное число представить в виде десятичного числа и наоборот, можно ли десятичное число представить в виде двоичного.

Двоичное в десятичное. Это очень просто. Метод такого перевода даёт наш способ записи чисел. Возьмём, к примеру, следующее двоичное число 1011. Разложим его по степеням двойки. Получим следующее:

1011 = 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 1 * 2 0

Выполним все записанные действия и получим:

1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 1 * 2 0 = 8 + 0+ 2 + 1 = 11. Таким образом, получаем, что 1011(двоичное) = 11 (десятичное). Сразу видно и небольшое неудобство двоичной системы. То же самое число, которое, в десятичной системе записано одним знаком в двоичной системе, для своей записи требует четыре знака. Но это плата за простоту (бесплатно ничего не бывает) . Но выигрыш двоичная система даёт огромный в арифметических действиях. И далее мы это увидим.

Представьте в виде десятичного числа следующие двоичные числа.

а) 10010 б) 11101 с) 1010 в) 1110 г) 100011 д) 1100111 е) 1001110

Сложение двоичных чисел.

Способ сложения столбиком в общем-то такой же как и для десятичного числа. То есть, сложение выполняется поразрядно, начиная с младшей цифры. Если при сложении двух цифр получается СУММА больше девяти, то записывается цифра=СУММА- 10, а ЦЕЛАЯ ЧАСТЬ (СУММА /10), добавляется в старшему разряду. (Сложите пару чисел столбиком вспомните как это делается.) Так и с двоичным числом. Складываем поразрядно, начиная с младшей цифры. Если получается больше 1, то записывается 1 и 1 добавляется к старшему разряду (говорят "на ум пошло").

Выполним пример: 10011 + 10001.

Первый разряд: 1+1 = 2. Записываем 0 и 1 на ум пошло.

Второй разряд : 1+0+1(запомненная единица) =2. Записываем 0 и 1 на ум пошло.

Третий разряд : 0+0+1(запомненная единица) = 1. Записываем 1.

Четвертый разряд 0+0=0. Записываем 0.

Пятый разряд 1+1=2. Записываем 0 и добавляем к шестым разрядом 1.

Переведём все три числа в десятичную систему и проверим правильность сложения.

10011 = 1*2 4 + 0*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 16 + 2 + 1 =19

10001 = 1*2 4 + 0*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 16 + 1 = 17

100100 = 1*2 5 + 0*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 0*2 0 =32+4=36

17 + 19 = 36 верное равенство

Примеры для самостоятельного решения:

а) 11001 +101 =

б) 11001 +11001 =

с) 1001 + 111 =

д) 10011 + 101 =

е) 11011 + 1111 =

д) 11111 + 10011 =

Как десятичное число перевести в двоичное. На очереди следующая операция - вычитание. Но этой операцией мы займёмся немного позже, а сейчас рассмотрим метод преобразования десятичного числа в двоичное.

Для того, чтобы преобразовать десятичное число в двоичное, его нужно разложить по степеням двойки. Но если разложение по степеням десятки получается сразу, то, как разложить по степеням двойки надо немного подумать. Для начала рассмотрим, как это сделать методом подбора. Возьмём десятичное число 12.

Шаг первый. 2 2 = 4, этого мало. Также мало и 2 3 = 8, а 2 4 =16 это уже много. Поэтому оставим 2 3 =8. 12 - 8 = 4. Теперь нужно представить в виде степени двойки 4.

Шаг второй. 4 = 2 2 .

Тогда наше число 12 = 2 3 + 2 2 . Старшая цифра имеет номер 4, старшая степень = 3, следовательно, должны быть слагаемые со степенями двойки 1 и 0. Но они нам не нужны, поэтому чтобы избавится от ненужных степеней, и оставить нужные запишем число так: 1*2 3 + 1*2 2 +0*2 1 + 0*2 0 = 1100 - это и есть двоичное представление числа 12. Нетрудно заметить, что каждая очередная степень - это наибольшая степень двойки, которая меньше разлагаемого числа. Чтобы закрепить метод рассмотрим ещё один пример. Число 23.

Шаг 1. Ближайшая степень двойки 2 4 = 16. 23 -16= 7.

Шаг 2. Ближайшая степень двойки 2 2 = 4. 7 - 4 = 3

Шаг 3. Ближайшая степень двойки 2 1 = 2. 3 - 2 = 1

Шаг 4. Ближайшая степень двойки 2 0 =1 1 - 1 =0

Получаем следующее разложение: 1*2 4 + 0*2 3 +1*2 2 +1*2 1 +1*2 0

А наше искомое двоичное число 10111

Рассмотренный выше метод хорошо решает поставленную перед ним задачу, но есть способ который алгоритмизируется значительно лучше. Алгоритм этого метода записан ниже:

Пока ЧИСЛО больше нуля делать

ОЧЕРЕДНАЯ ЦИФРА = остаток от деления ЧИСЛА на 2

ЧИСЛО = целая часть от деления ЧИСЛА на 2

Когда этот алгоритм завершит свою работу, последовательность вычисленных ОЧЕРЕДНЫХ ЦИФР и будет представлять двоичное число. Для примера поработаем с числом 19.

Начало алгоритма ЧИСЛО = 19

ОЧЕРЕДНАЯ ЦИФРА = 1

ОЧЕРЕДНАЯ ЦИФРА = 1

ОЧЕРЕДНАЯ ЦИФРА = 0

ОЧЕРЕДНАЯ ЦИФРА = 0

ОЧЕРЕДНАЯ ЦИФРА = 1

Итак, в результате имеем следующее число 10011. Заметьте, что два рассмотренных метода отличаются порядком получения очередных цифр. В первом методе первая полученная цифра - это старшая цифра двоичного числа, а во втором первая полученная цифра наоборот младшая.

Преобразуйте десятичные числа в двоичные двумя способами

а) 14 б) 29 в) 134 г) 158 е) 1190 ж) 2019

Как преобразовать в десятичное число дробную часть.

Известно, что любое рациональное число можно представить в виде десятичной и обыкновенной дроби. Обыкновенная дробь, то есть дробь вида А/В может быть правильной и неправильной. Дробь называется правильной если А<В и неправильной если А>В.

Если рациональное число представлено неправильной дробью, и при этом числитель дроби делится на знаменатель нацело, то данное рациональное число - число целое, во всех иных случаях возникает дробная часть. Дробная часть зачастую бывает очень длинным числом и даже бесконечным (бесконечная периодическая дробь, например 20/6), поэтому в случае с дробной частью у нас возникает не просто задача перевода одного представления в другое, а перевод с определённой точностью.

Правило точности. Предположим, дано десятичное число, которое в виде десятичной дроби представимо с точностью до N знаков. Для того, чтобы соответствующее двоичное число было той же точности, в нём необходимо записать M - знаков, так что бы

А теперь попробуем получить правило перевода, и для начала рассмотрим пример 5,401

Решение:

Целую часть мы получим по уже известным нам правилам, и она равна двоичному числу 101. А дробную часть разложим по степеням 2.

Шаг 1: 2 -2 = 0,25; 0,401 - 0,25 = 0,151. - это остаток.

Шаг 2: Сейчас необходимо степенью двойки представить 0,151. Сделаем это: 2 -3 = 0,125; 0,151 - 0,125 = 0,026

Таким образом, исходную дробную, часть можно представить в виде 2 -2 +2 -3 . То же самое можно записать таким двоичным числом: 0,011. В первом дробном разряде стоит ноль, это потому, что в нашем разложении степень 2 -1 отсутствует.

Из первого и второго шагов ясно, что это представление не точное и может быть разложение желательно продолжить. Обратимся к правилу. Оно говорит, что нам нужно столько знаков М чтобы 10 3 было меньше чем 2 М. То есть 1000<2 M . То есть в двоичном разложении у нас должно быть не менее десяти знаков, так как 2 9 = 512 и только 2 10 = 1024. Продолжим процесс.

Шаг 3: Сейчас работаем с числом 0,026. Ближайшая к этому числу степень двойки 2 -6 = 0,015625; 0,026 - 0,015625 = 0,010375 теперь наше более точное двоичное число имеет вид: 0,011001. После запятой уже шесть знаков, но этого пока недостаточно, поэтому выполняем ещё один шаг.

Шаг 4: Сейчас работаем с числом 0,010375. Ближайшая к этому числу степень двойки 2 -7 = 0,0078125;

0,010375 - 0,0078125 = 0,0025625

Шаг 5: Сейчас работаем с числом 0,0025625. Ближайшая к этому числу степень двойки 2 -9 = 0,001953125;

0,0025625 - 0,001953125 = 0,000609375

Последний получившийся остаток меньше чем 2 -10 и если бы мы желали продолжать приближение к исходному числу, то нам бы понадобилось 2 -11 , но это уже превосходит требуемую точность, а следовательно расчёты можно прекратить и записать окончательное двоичное представление дробной части.

0,401 = 0,011001101

Как видно, преобразование дробной части десятичного числа в двоичное представление немного более сложно, чем преобразование целой части. Таблица степеней двойки в конце лекции.

А сейчас запишем алгоритм преобразования:

Исходные данные алгоритма: Через А будем обозначать исходную правильную десятичную дробь записанную в десятичной форме. Пусть эта дробь содержит N знаков.

Алгоритм

Действие 1. Определим количество необходимых двоичных знаков М из неравенства 10 N < 2 M

Действие 2: Цикл вычисления цифр двоичного представления (цифры после нуля). Номер цифры будем обозначать символом К.

  1. Номер цифры = 1
  2. Если 2 -К > А

То в запись двоичного числа добавляем ноль

    • в запись двоичного числа добавляем 1
    • А = А - 2 -К
  1. К = К + 1
  2. Если К > М
  • то работа алгоритма завершена
  • Иначе переходим на пункт 2.

Переведите десятичные числа в двоичные

а) 3,6 б) 12,0112 в) 0,231 г) 0,121 д) 23, 0091

Вычитание двоичных чисел. Вычитать числа, будем также столбиком и общее правило тоже, что и для десятичных чисел, вычитание выполняется поразрядно и если в разряде не хватает единицы, то она занимается в старшем. Решим следующий пример:

Первый разряд. 1 - 0 =1. Записываем 1.

Второй разряд 0 -1. Не хватает единицы. Занимаем её в старшем разряде. Единица из старшего разряда переходит в младший, как две единицы (потому что старший разряд представляется двойкой большей степени) 2-1 =1. Записываем 1.

Третий разряд . Единицу этого разряда мы занимали, поэтому сейчас в разряде 0 и есть необходимость занять единицу старшего разряда. 2-1 =1. Записываем 1.

Проверим результат в десятичной системе

1101 - 110 = 13 - 6 = 7 (111) Верное равенство.

Еще один интересный способ выполнения вычитания связан с понятием дополнительного кода, который позволяет свести вычитание к сложению. Получается число в дополнительном коде исключительно просто, берём число, заменяем нули на единицы, единицы наоборот заменяем на нули и к младшему разряду добавляем единицу. Например, 10010, в дополнительном коде будет 011011.

Правило вычитания через дополнительный код утверждает, что вычитание можно заменить на сложение если вычитаемое заменить на число в дополнительном коде.

Пример: 34 - 22 = 12

Запишем этот пример в двоичном виде. 100010 - 10110 = 1100

Дополнительный код числа 10110 будет такой

01001 + 00001 = 01010. Тогда исходный пример можно заменить сложением так 100010 + 01010 = 101100 Далее необходимо отбросить одну единицу в старшем разряде. Если это сделать то, получим 001100. Отбросим незначащие нули и получим 1100, то есть пример решён правильно

Выполните вычитания. Обычным способом и в дополнительном коде, переведя предварительно десятичные числа в двоичные:

Выполните проверку переведя двоичный результат в десятичную систему счисления.

Умножение в двоичной системе счисления.

Для начала рассмотрим следующий любопытный факт. Для того, чтобы умножить двоичное число на 2 (десятичная двойка это 10 в двоичной системе) достаточно к умножаемому числу слева приписать один ноль.

Пример. 10101 * 10 = 101010

Проверка.

10101 = 1*2 4 + 0*2 3 + 1*2 2 + 0*2 1 +1*2 0 = 16 + 4 + 1 = 21

101010 =1*2 5 + 0*2 4 + 1*2 3 + 0*2 2 +1*2 1 +0*2 0 = 32 + 8 + 2 = 42

Если мы вспомним, что любое двоичное число разлагается по степеням двойки, то становится ясно, что умножение в двоичной системе счисления сводится к умножению на 10 (то есть на десятичную 2), а стало быть, умножение это ряд последовательных сдвигов. Общее правило таково: как и для десятичных чисел, умножение двоичных выполняется поразрядно. И для каждого разряда второго множителя к первому множителю добавляется один ноль справа. Пример (пока не столбиком):

1011 * 101 Это умножение можно свести к сумме трёх порязрядных умножений:

1011 * 1 + 1011 * 0 + 1011 * 100 = 1011 +101100 = 110111 В столбик это же самое можно записать так:

Проверка:

101 = 5 (десятичное)

1011 = 11 (десятичное)

110111 = 55 (десятичное)

5*11 = 55 верное равенство

Решите самостоятельно

а) 1101 * 1110 =

б) 1010 * 110 =

д) 101011 * 1101 =

е) 10010 * 1001 =

Примечание: Кстати таблица умножения в двоичной системе состоит только из одного пункта 1 * 1 = 1

Деление в двоичной системе счисления.

Мы уже рассмотрели три действия и думаю уже понятно, что в общем-то действия над двоичными числами мало отличаются от действий над десятичными числами. Разница появляется только в том, что цифр две а не десять, но это только упрощает арифметические операции. Так же обстоит дело и с делением, но для лучшего понимания алгоритм деления разберём более подробно. Пусть нам необходимо разделить два десятичных числа, например 234 разделить на 7. Как мы это делаем.

Мы выделяем справа (от старшего разряда) такое количество цифр, чтобы получившееся число было как можно меньше и в то же время больше делителя. 2 - меньше делителя, следовательно, необходимое нам число 23. Затем делим полученное число на делитель с остатком. Получаем следующий результат:

Описанную операцию повторяем до тех пор, пока полученный остаток не окажется меньше делителя. Когда это случится, число полученное под чертой, это частное, а последний остаток - это остаток операции. Так вот операция деления двоичного числа выполняется точно также. Попробуем

Пример: 10010111 / 101

Ищем число, от старшего разряда которое первое было бы больше чем делитель. Это четырехразрядное число 1001. Оно выделено жирным шрифтом. Теперь необходимо подобрать делитель выделенному числу. И здесь мы опять выигрываем в сравнении в десятичной системой. Дело в том, что подбираемый делитель это обязательно цифра, а цифры у нас только две. Так как 1001 явно больше 101, то с делителем всё понятно это 1. Выполним шаг операции.

Итак, остаток от выполненной операции 100. Это меньше чем 101, поэтому чтобы выполнить второй шаг деления, необходимо добавить к 100 следующую цифру, это цифра 0. Теперь имеем следующее число:

1000 больше 101 поэтому на втором шаге мы опять допишем в частное цифру 1 и получим следующий результат (для экономии места сразу опустим следующую цифру).

Третий шаг. Полученное число 110 больше 101, поэтому и на этом шаге мы запишем в частное 1. Получиться так:

Полученное число 11 меньше 101, поэтому записываем в частное цифру 0 и опускаем вниз следующую цифру. Получается так:

Полученное число больше 101, поэтому в частное записываем цифру 1 и опять выполняем действия. Получается такая картина:

1

0

Полученный остаток 10 меньше 101, но у нас закончились цифры в делимом, поэтому 10 это окончательный остаток, а 1110 это искомое частное.

Проверим в десятичных числах

На этом мы заканчиваем описание простейших арифметических операций, которые необходимо знать, для того, чтобы пользоваться двоичной арифметикой, и теперь попробуем ответить на вопрос "Зачем нужна двоичная арифметика". Конечно, выше уже было показано, что запись числа в двоичной системе существенно упрощает арифметические операции, но в то же время сама запись становится значительно длиннее, что уменьшает ценность полученного упрощения, поэтому необходимо поискать такие задачи, решение которых существенно проще в двоичных числах.

Задача 1: Получение всех выборок

Очень часто встречаются задачи, в которых нужно уметь построить все возможные комбинации из заданного набора предметов. Например, такая задача:

Дана большая куча камней, разложить камни по двум кучам таким образом, чтобы масса этих двух куч была как можно более одинаковой.

Эту задачу можно сформулировать так:

Найти такую выборку камней из большой кучи, что её общая масса будет как можно менее отличаться от половины массы большой кучи.

Задач такого сорта довольно много. И все они сводятся, как уже было сказано к умению получить все возможные комбинации (далее мы будем называть их выборками) из заданного набора элементов. И сейчас мы рассмотрим общий метод получения всех возможных выборок с использованием операции сложения двоичных чисел. А начнём с примера. Пусть есть множество из трёх предметов. Построим все возможные выборки. Предметы будем обозначать порядковыми номерами. То есть, имеются следующие предметы: 1, 2, 3.

Выборки: (0, 0, 1); (0, 1, 0); (0, 1, 1); (1, 0, 0); (1, 0, 1); (1, 1, 0); (1, 1, 1);

Если в позиции с очередным номером стоит единица, то это означает, что элемент с номером равным этой позиции присутствует в выборке, а если стоит ноль, то элемент не присутствует. Например, выборка (0, 1, 0); состоит из одного элемента с номером 2, а выборка (1, 1, 0); состоит из двух элементов с номерами 1 и 2.

Из этого примера ясно видно, что выборку можно представить в виде двоичного числа. Кроме того, нетрудно заметить, что выше записаны все возможные одно, двух и трехзначные двоичные числа. Перепишем их следующим образом:

001; 010; 011; 100; 101; 110; 111

1; 10; 11; 100; 101; 110; 111

Мы получили ряд последовательных двоичных чисел, каждое из которых получается из предыдущего прибавлением единицы. Можете это проверить. Используя эту замеченную закономерность можно построить следующий алгоритм получения выборок.

Исходные данные алгоритма

Дан набор предметов N - штук. Далее будем называть этот набор множеством исходных элементов. Пронумеруем все элементы исходного множества от 1 до N. Составим двоичное число из N незначащих нулей. 0000… 0 N Это нулевое двоичное число будет обозначать нулевую выборку с которой и начнётся процесс составления выборок. Разряды числа считаются справа налево, то есть самый левый разряд это самый старший.

Договоримся обозначать это двоичное число большими буквами ДВОИЧНОЕ

Алгоритм

Если ДВОИЧНОЕ число состоит целиком из единиц

То прекращаем работу алгоритма

    • Прибавляем к ДВОИЧНОМУ числу единицу по правилам двоичной арифметики.
    • Из полученного ДВОИЧНОГО числа составляем очередную выборку, как было описано выше.

Задача 2: Поиск больших простых чисел

Для начала вспомним, что простым числом называется такое натуральное число, которое делится только на 1 и на само себя. Примеры простых чисел: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31

Поиск больших простых чисел - очень важная математическая задача. Большие простые числа необходимы для надёжного шифрования сообщений некоторыми алгоритмами шифрования. Причём необходимы не просто большие числа, а очень большие. Чем число больше, тем надежнее шифр, построенный на этом числе.

Примечание. Надёжным шифром называется такой шифр, для расшифровки которого нужно очень большое время.

Почему? Простое число играет роль ключа при шифровке и дешифровке. Кроме того, мы знаем, что простые числа встречаются в ряду натуральных чисел не слишком часто. Их достаточно много среди первой тысячи, потом их количество начинает быстро убывать. Поэтому если в качестве ключа мы возьмём не очень большое число, дешифровальщик с помощью даже не очень быстрого компьютера сможет до него добраться (перебирая в качестве ключа все простые одно за другим) за ограниченное время.

Достаточно надежный код можно получить если взять простое в котором, например 150 знаков. Однако, найти такое простое не так просто. Предположим, что некоторое число А (очень большое) нужно проверить на простоту. Это тоже самое, что поискать его делители. Если мы сможем найти делители в интервале от 2 до корень квадратный из А, то оно не простое. Оценим количество чисел которые необходимо проверить на способность разделить число А.

Предположим число А имеет 150 знаков. Корень квадратный из него будет содержать не менее 75 знаков. Чтобы перебрать такое количество возможных делителей нам потребуется очень мощный компьютер и огромное время, а это означает, что задача практически не решаема.

Как с этим бороться.

Во-первых, можно поучится быстрее осуществлять проверку на делимость одного числа на другое, во-вторых можно попытаться число А подбирать таким образом, чтобы оно было простым с высокой степенью вероятности. Оказывается это возможно. Математик Мерсен обнаружил, что числа следующего вида

Являются простыми с высокой степенью вероятности.

Чтобы понять фразу написанную выше, посчитаем сколько простых чисел находится в первой тысяче и сколько чисел Мерсена в этой же тысяче являются простыми. Итак, числа Мерсена в первой тысяче - это следующие:

2 1 - 1 = 1 ; 2 2 -1 = 3 ; 2 3 - 1 = 7 ; 2 4 - 1 = 15; 2 5 - 1 = 31 ; 2 6 -1 = 63;

2 7 - 1 =127 ; 2 8 -1 = 255; 2 9 - 1 = 511;

Жирным шрифтом помечены простые числа. Всего на 9 чисел Мерсена 5 простых. В процентах это 5/9*100 = 55,6%. В то же время на 1000 первых натуральных чисел только 169 простых. В процентах это 169/1000*100 = 16,9%. То есть в первой тысяче в процентом отношении простые среди чисел Мерсена встречаются почти в 4 раза чаще, чем среди просто натуральных чисел

___________________________________________________________

А теперь возьмём конкретное число Мерсена, например 2 4 - 1. Запишем его в виде двоичного числа.

2 4 - 1 = 10000 - 1 = 1111

Возьмём следующее число Мерсена 2 5 -1 и запишем его двоичным числом. Получим следующее:

2 5 -1 = 100000 - 1 = 11111

Уже видно, что все числа Мерсена представляют собой последовательность единиц и уже сам этот факт даёт большой выигрыш. Во-первых, в двоичной системе счисления получить очередное число Мерсена очень просто, достаточно к очередному числу дописать единицу, во-вторых, искать делители в двоичной системе много проще чем в десятичной.

Быстрый перевод десятичного числа в двоичное

Одна из главным проблем использования двоичной системы счисления - это сложность при переводе десятичного числа в двоичное. Это довольно трудоёмкое дело. Конечно, небольшие числа трёх или четырехзначные перевести не слишком сложно, но для десятичных чисел, в которых 5 и более знаков это уже затруднительно. То есть нам нужен способ, позволяющий быстро переводить в двоичное представление большие десятичные числа.

Такой способ был придуман французским математиком Лежандром. Пусть,например, дано число 11183445. Делим его на 64, получается остаток 21 и частное 174741. Это число делим опять на 64, получается в остатке 21 и частное 2730.Наконец, 2730, деленное на 64, даёт в остатке 42 и частное 42. Но 64 вдвоичной системе есть 1000000, 21 в двоичной системе - 10101, а 42 есть 101010,Поэтому, исходное число запишется в двоичной системе следующим образом:

101010 101010 010101 010101

Чтобы было более понятно, ещё один пример с числом поменьше. Переведём вдвоичное представление число 235. Поделим 235 на 64 с остатком. Получим:

ЧАСТНОЕ = 3, двоичное 11 или 000011

ОСТАТОК = 43, двоичное 101011

Тогда 235 = 11101011, Проверим этот результат:

11101011 = 2 7 + 2 6 + 2 5 + 2 3 + 2 1 + 2 0 = 128+64+32+8+2+1 = 235

Примечания:

  1. Нетрудно заметить, что в окончательное двоичное число включаются все остатки и на последнем шаге и остаток и частное.
  2. Частное записывается перед остатком.
  3. Если полученное частное или остаток имеют меньше 6 разрядов, в двоичном представлении (6 нулей содержит двоичное представление числа 64 = 1000000), то к нему добавляются незначащие нули.

И еще один сложный пример. Число 25678425.

Шаг 1: 25678425 делим на 64

Частное = 401225

Остаток = 25 = 011001

Шаг 2: 401225 делим на 64

Частное = 6269

Остаток = 9 = 001001

Шаг 3: 6269 делим на 64

Частное = 97

Остаток = 61 = 111101

Шаг 4: 97 делим на 64

Частное = 1 = 000001

Остаток = 33 = 100001

Число результат = 1.100001.111101.001001.011001

В этом числе точкой отделены входящие в него промежуточные результаты.

Переведите в двоичное представление числа:

ПРИЛОЖЕНИЕ: ТАБЛИЦА 1

0,015625

0,0078125

0,00390625

0,001953125

0,0009765625

0,00048828125

0,000244140625

0,0001220703125

0,00006103515625

0,000030517578125

0,0000152587890625

0,00000762939453125

0,000003814697265625

0,0000019073486328125

0,00000095367431640625

0,000000476837158203125

Выполнение арифметических действий в любых позиционных системах счисления производится по тем же правилам, которые используются в десятичной системе счисления.

Так же, как и в десятичной системе счисления, для выполнения арифметических действий необходимо знать таблицы сложения (вычитания) и умножения.

Таблица сложения, вычитания и умножения для двоичной системы счисления

Сложение двоичных чисел

Сложение в двоичной системе счисления выполняется по тем же правилам, что и в десятичной. Два числа записываются в столбик с выравниванием по разделителю целой и дробной части и при необходимости дополняются справа незначащими нулями. Сложение начинается с крайнего правого разряда. Две единицы младшего разряда объединяются в единицу старшего.

Пример : 1011,1 2 + 1010,11 2

Интересна также ситуация, когда складываются больше двух чисел. В этом случае возможен перенос через несколько разрядов.
Пример : 111,1 2 + 111 2 + 101,1 2

При сложении в разряде единиц (разряд 0) оказывается 4 единицы, которые, объединившись, дают 100 2 . Поэтому из нулевого разряда в первый разряд переносится 0 , а во второй — 1 .
Аналогичная ситуация возникает во втором разряде, где с учетом двух перенесенных единиц получается число 5 = 101 2 . 1 остается во втором разряде, 0 переносится в третий и 1 переносится в четвёртый.

Вычитание двоичных чисел

В случаях, когда занимается единица старшего разряда, она дает две единицы младшего разряда. Если занимается единица через несколько разрядов, то она дает по одной единице во всех промежуточных нулевых разрядах и две единицы в том разряде, для которого занималась.
Пример : 10110,01 2 — 1001,1 2

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие.

В качестве примера сложим в столбик двоичные числа 110 2 и 11 2 :

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 =1*2 2 + 1*2 1 + 0*2 0 = 6 10 ;

11 2 = 1*2 1 + 1*2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1*2 3 +0*2 2 + 0*2 1 + 1*2 0 = 9 10 /

Сравним результаты – сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел 110 2 и 11 2:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Умножение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления с последовательным умножением множимого на цифры множителя. В качестве примера произведем умножение двоичных чисел и:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 и 11 2:


  • познакомить учащихся с двоичной системой счисления, указать ее недостатки и преимущества использования в вычислительной технике;
  • развивать логическое мышление; формировать навыки выполнения арифметических действий с двоичными числами;
  • прививать интерес к предмету.

Программно-дидактическое обеспечение: ПК, программа Калькулятор.

Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих.

1. Постановка целей урока

– Сколько будет:

1000110 2 + 1010101 2 ;
100011110111 2 /101101 2;
1110001110 2 – 11010 2 ;
101101 2 * 100011 2

После предложенных ответов учащихся, комментирую и объясняю, что сегодня на уроке мы научимся правильно выполнять арифметические действия в двоичной системе счисления.

2. Человек не ведет счет в двоичной системе, т.к. она для него не удобна. А кто или что использует ее для счета и почему?

II. Изложение нового материала

Двоичная система счисления

Из всех позиционных систем счисления особенно проста и поэтому интересна двоичная система счисления.

– Чему равно основание двоичной системы счисления? (q = 2)

– Какой вид имеет развёрнутая форма записи двоичного числа? (А 2 =а n-1 *2 n-1 + …a 0*2 0 + a -1 *2 -1 +…a -m *2 -m , где а i равно 1 или 0.)

Двоичная система счисления издавна была предметом пристального внимания многих учёных. П.С.Лаплас писал о своём отношении к двоичной (бинарной) системе счисления великого математика Г.Ф.Лейбница: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытие и что высшее существо создает всё из небытия точно таким же образом, как единица и нуль в его системе выражают все числа ». Эти слова подчеркивают удивительную универсальность алфавита состоящего всего из двух символов.

Двоичная арифметика.

Для того чтобы лучше освоить двоичную систему счисления, необходимо освоить выполнение арифметических действий над двоичными числами.

Все позиционные системы «одинаковы», а именно, во всех них арифметические операции выполняются по одним и тем же правилам:

  • справедливы одни и те же законы арифметики: коммуникативный, ассоциативный, дистрибутивный;
  • справедливы правила сложения, вычитания, умножения и деления столбиком;
  • правила выполнения арифметических операций опираются на таблицы сложения и умножения.

Сложение.

Таблица сложения двоичных чисел проста.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10
1 + 1 + 1 = 11

При сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Вычитание.

0 – 0 = 0
0 – 1 = 11
1 – 0 = 1
1 – 1 = 0

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведённой таблицей вычитания с учетом возможных заёмов из старших разрядов.

Умножение.

Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.

При делении столбиком приходится в качестве промежуточных результатов выполнять действия умножения и вычитания.

III. Закрепление изученного

Решите задачи.

Выполните сложение:

1001001 + 10101 (ответ 1011110);
101101 + 1101101 (ответ 10011010)
11000,11 + 11010,11 (ответ 110011,1)

Выполните вычитание:

10001000 – 1110011 (ответ 10101)
1101100 – 10110110 (ответ – 1001010)
110101,101 – 1001,111 (101011,11)

Выполните умножение:

100001*111,11 (ответ : 11111111,11)
10011*1111,01 (ответ : 100100001,11)

Выполните деление:

1000000 / 1110 (ответ :100)
11101001000/111100 (ответ : 11111)

IV. Итоги урока

Оценивание работу учащихся, назвать отличившихся на уроке.

V. Домашнее задание

Выучить правила выполнения арифметических действий в двоичной системе счисления, а так же таблицы сложения, вычитания и умножения в двоичной системе счисления.

Выполните действия:

  1. 110010 + 111,01;
  2. 11110000111 – 110110001;
  3. 10101,101 * 111;
  4. 10101110/101.

Составьте таблицы сложения и умножения в троичной и пятеричной системе счисления.



Рассказать друзьям